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Abstract: In modern computer games, “bots” – intelligent realistic agents play a prominent role in the popularity of a game in
the market. Typically, bots are modeled using finite-state machine and then programmed via simple conditional statements which are
hard-coded in bots logic. Since these bots have become quite predictable to an experienced games′ player, a player might lose interest
in the game. We propose the use of a game theoretic based learning rule called fictitious play for improving behavior of these computer
game bots which will make them less predictable and hence, more a enjoyable game.
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1 Introduction

First person shooter (FPS) games, online card
games, and massively multiplayer online playing games
(MMORPGs) are popular and extremely diverse online
game genres. Our research in this paper is based on one
of the most vibrantly used FPS games, the Counter-Strike
(CS). Encouraged by game Artificial Intelligence (AI), we
have incorporated computer game bots for our simulation of
the CS game. Computer game bots are non-player charac-
ters (NPCs) that simulate human game players and display
human-like behavior while playing against humans. We
propose a state-of-the-art method towards game design us-
ing a game theory based learning algorithm called fictitious
play[1]. The bots (non-player characters), in this method,
assume that the opponents are playing a fixed strategy and
hence based on their past experiences they plan their next
move. This research explores how a computer game bot
adapts to the dynamic human player′s behavior while play-
ing the simulated game of CS, thereby leading to its un-
predictable behavior. Here we focus only on an individual
agent at a time when it comes to experimentation. All re-
maining alternative evaluations, such as team behavior, lie
outside the scope of the current research.

It is very common to add a module to computer games
called AI that guides behavior of NPCs. This AI mod-
ule is inspired by the field of Artificial Intelligence. How-
ever, it differs from it. Game AI aims to speed up games
and encapsulates rules of thumb to NPC and not neces-
sarily employs methods which may be actually classified as
AI technique by the researchers in academic AI. Although
a crisp definition for research discipline of AI is difficult
to state, as researchers have different viewpoint/point of
view/context/angles to define the term. Some researchers
like[2] explain AI as a study of measuring performance
against humans by thinking like humans and acting like hu-
mans, and a measurement against ideal performances like
thinking rationally and acting rationally; others like define
it is an effort towards making the computers think, and
some suggest that AI is the automation of activities, such
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as decision-making, learning, problem solving, etc., that we
associate with human thinking. Even though with disagree-
ment over the definition of AI, the goal of the researchers
is to design intelligent algorithms for various purposes, and
in our case for improving behavior of computer game bots.

Computer games have improved exponentially in graph-
ics and sound capability, more CPU is power available for
implementing AI and become competitive in the games
market. For the users, it is very important to have the abil-
ity of discerning various game character actions and hence
improved and enhanced graphical representation of those
characters came into existence. Moreover, far advanced
game development techniques with high-end graphics are
employed by Graphics Processing Unit with higher CPU
processing power. High standards in terms of remarkable AI
techniques are a must along with excellent graphics, sound
capability and powerful CPUs that would account for the
success of a game. These marked changes came into ex-
istence with the use of AI in games[3], also refered to as
computational intelligence in games[4]. Technically, AI in
computer game design has been treated differently in three
communities: 1) combat oriented AI, 2) non-combat ori-
ented AI, and 3) analytical and efficiency oriented AI. Game
AI is combat oriented in FPS games and is in its nascent
stages, and lacks the ability to dynamically interact with the
physical game environment like terrains. Non-combat ori-
ented AI is a much more complicated implementation form
of game AI and is therefore generally not preferred by game
programmers. The analytical and efficiency oriented AI is
the most rapidly evolving class of games and has been ex-
plored but needs to be fully implemented. Our research and
experiments fall into this, namely analytical and efficiency
oriented AI, category of game AI with the help of game the-
ory based learning algorithm. Our game bots analyze the
observations of the opponent′s actions, learn and respond
efficiently resulting into a better game performance, and we
get significant bots improvements.

Modern day games pose problems for AI with the most
common features like real time, dynamicity of game envi-
ronments, game bots having incomplete knowledge of the
world, and restricted game resources for game bots[5]. Fur-



U. K. Patel et al. / Improving Behavior of Computer Game Bots Using Fictitious Play 123

thermore, game AI has challenges to face for different genres
of games. In role playing games (RPGs), more realistic and
engaging NPCs are needed[6]. FPS games face a challenge
with AI agents when these agents have to assume possibil-
ities according to their current strategy for reasoning and
selecting their behavior at higher levels of the computer
games[7]. Even though AI controlled NPCs are successful in
avoiding the adverse game environment actions, such as to
shoot like an experienced skilled player, human combatants
have four major things to offer over AI: 1) instinct for sur-
vival, 2) better knowledge of their respective environments,
3) their hunting ability, and 4) teamwork. A detailed study
shows that these expected AI challenges clearly indicate the
utmost need and efficient use of AI in computer games that
can be achieved by maximizing the goal and selecting the
most optimal actions as per the given information in [8, 9].

AI in game bots has a purpose of presenting several
expected NPC capabilities that include learning, decision-
making, prediction, reasoning, planning, and scheduling[8].
Our research encompasses the capabilities like learning in
line with prediction and decision-making capability with
the game bots and the results are quite promising. Ma-
chine learning in AI provides algorithms like reinforcement
learning, supervised learning, and unsupervised learning.
Fictitious play is a learning rule that we have incorporated
in our research based on which we discover how learning
makes game bots more intelligent.

AI aspect of game design is the driving force for computer
game developers as it can be used to control characters, give
commentary in sports games, or change parameters dynam-
ically to make the game more challenging[10]. They find it
difficult and time-consuming to hard-code parameters for
encoding bots strategies to tune the NPCs to suit the game
environment. In addition, there is a lack of infrastructure
for building and maintaining dynamic multi-agent realis-
tic research environments. To overcome these intricate is-
sues, Adobbbati et al.[11] suggested multi-user virtual envi-
ronments (MUVEs) like AI test-beds, e.g., Phoenix[12] and
RoboCup[13], where game bots are tested in complex multi-
agent environments. The biggest advantage of these test-
beds is that they are invariant to specific computer games
and therefore could be used across many. For research in AI
and multi-agent systems (MAS), gamebots provide several
previously unavailable opportunities, such as: 1) supporting
multiple tasks, 2) providing an extension for built-in script-
ing language, 3) allows creating multiple environments, 4)
supporting humans-as-agents, and 5) public availability in
USA and overseas[11].

Neumann with Morgenstern published a groundbreaking
text giving birth to an interdisciplinary research field of
game theory, which until recently has largely been over-
looked by the computer scientists[14, 15]. Game theory has
become a branch of applied mathematics which is assim-
ilated by various disciplines, such as social sciences, biol-
ogy, political science, philosophy, and engineering. As with
other computer science applications, the game theory ap-
proach in game development is yet to be explored to its ca-
pacity. Game theory concepts in AI can have an important
role to play in the implementation of numerous computer
game strategies that can provide a number of mathematical
tools to understand the possible opponent strategies. This

not only provides the game developers with a useful tool
for implementing various complex strategies for the com-
puter games, but can also contribute towards their market-
ing value. One such learning algorithm in game theory is
called fictitious play (FP)[1].

Fictitious play was introduced as a solution to find Nash
equilibrium. An agent using fictitious play considers that
opponents are playing a fixed strategy and keeps track of
the strategy being played by them[1]. Based on these ob-
servations, agents execute their future actions. Fictitious
play is a simple and efficient algorithm. Fictitious play be-
ing a light weight algorithm can be used in internet based
virtual environment for three-dimensional games, such as
[16]. This paper explores the use of fictitious play in game
AI, specifically for computer game bots.

In Section 2, we discuss the background of computer
games bots, the game of CS, game theory concepts and
fictitious play thus creating the foundation to understand
how our research is related to these concepts. In Section 3,
we discuss some of the related works by [17] and [11] in
the field of game AI and look into their detailed work.
In Section 4, we propose a state-of-the-art method as our
approach towards game design using a game theory based
learning algorithm called fictitious play. Also, we present
our experiments and promising results, and finally discuss
the future work. In Section 5, we discuss conclusion on our
research. To our knowledge, the attempt to infuse game
theoretic concepts in designing the computer game bots is
a novel frontier.

2 Background

In the computer game bot or game agent research com-
munity, there are many other characterizations for au-
tonomous agents. To exemplify, Yildirim and Stene[8],
Franklin and Graesser[9] state that game agents are said to
be autonomous if they possess their own agenda and select
the corresponding necessary actions. Russell and Norvig[2]

suggests that an agent is said to be autonomous if its own
experience can determine his behavior provided that it has
the ability to learn and adapt. In robotics, independence of
control is autonomy.

Technically, AI in computer game design has been treated
differently in three camps: 1) combat oriented AI, 2) non-
combat oriented AI, and 3) analytical and efficiency ori-
ented AI. Game AI is combat oriented in FPS games and
is only in the beginning stages. Since its implementation in
Half-Life, combat oriented AI emerged as an unseen game
giving the players a realistic awareness of the weapons, the
environment, and AI comrades. Game designers realized
the importance of this AI aspect of game design after Half-
Life. It lacks the ability to dynamically interact with the
physical game environment like terrains. Non-combat ori-
ented AI is a much more complicated implementation form
of game AI and is therefore generally not preferred by game
programmers. One of its philosophical implications can be
found in RPG with mainly NPC. The analytical and effi-
ciency oriented AI is the newest frontier of games and has
to be reached to its full potential. Analytical AI intends to
reinforce the game experience; e.g., by controlling number
of combat AI opponent agents, keeping records of opponent
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agents reaction time and thus analyzing the damage levels.
Efficiency AI intends to make an efficient use of all the avail-
able CPU resources at a given time. For example, in the
game of CS, coloring the critical areas of the map and leav-
ing the rest in grey shades during a particular phase of a
round could create a possibility of disguise for the terrorist
agent. Our research and experiments fall into this category
of game AI with the help of a learning rule in game AI
called fictitious play (FP)[1]. Our game bots in FP analyze
the observations of the opponent actions, learn and respond
efficiently resulting into a better game performance, and we
get significant bots improvements.

For the current research, we use the game of CS as a
classic example for first-person shooter games and our sim-
ulation environment is inspired from it. Following section
discusses the game.

2.1 The game of counter-strike

It is required to study the environment for bots interac-
tion and their usage in computer games. Hence, we selected
a modification (i.e., mod for the popular game Half-Life),
the game of CS, as a case study for our project. This is one
of the most popular open source games online. There are
thousands of game players that play it simultaneously on
the Internet.

This first-person-shooter (FPS) game is team-based[18].
It incorporates two teams, counter-terrorist team (CT) and
a terrorist team (T) playing against each other in a variety
of exotic and urban environments. The game agents are ad-
dressed as CT agents and T agents for the respective teams.
Fig. 1 is a snapshot of CS as viewed by a player after a few
rounds of the actual game. The game status values shown
are two rounds won by the counter-terrorists and two by
the terrorists at the top black panel of the window. On the
grey panel of the window at the bottom, the name of the
agent playing this round is Tim (i.e., a terrorist). The land-
scape in the figure is a two-dimensional scene with concrete
and wooden walls throughout as seen by the player (a T
agent in this case). T agent is holding a gun. A contin-
ual flashed map is provided on top of this two-dimensional
scene for the T agent to check the position of its teammates
beyond the walls of the area. The teammates are depicted
as small white points on this area map. This map shows
counter-terrorist camp (CTC) on the top left corner and the
terrorist camp (TC) on the bottom right corner in the fig-
ure. These camps are the starting points of both the teams
agents to initiate their locomotion. Bomb site A (BCA)
shown as =A, and bomb site B (BCB) shown as =B are
the target bomb sites either for the terrorists to plant the
bomb or for the counter-terrorists to diffuse it. The area
map has faint white lines drawn between the TC and BCA
which suggests that the T agents have already played a few
rounds and have visited BCA by adopting different paths.
This game in general features three game modes[19]:

1) Diffusion where T players plant a bomb, and CT play-
ers diffuse it,

2) hostage rescue where CT players attempt to rescue
hostages, and

3) assassination where T players attempt to kill a VIP
that the CT players must protect.

Fig. 1 A snapshot of Counter-Strike

Here, we are more concerned with the first feature of
the game, i.e., diffusion. Elaborating this, in the diffusion
mode, the T agent plants the bomb, while the CT diffuses
it. However, usually the round ends beforehand because
one of the teams would win the round by eliminating the
opponents. The team winning more number of rounds is
the winner.

This scenario can be played using different preloaded
maps available in the game. Usually, on each map there are
two sites labeled A, and B which are called “bomb sites”
where a T agent plants the bomb. CTs make efforts to
defend these “bomb sites”, and if the bomb gets planted
by T, CTs try to diffuse the bomb before it explodes. In
the beginning of each round, both the teams are located at
designated locations on the map. For example, the location
where CTs start is called “counter terrorist camp” (CTC)
and similarly, Ts′ camp is called “terrorist camp” (TC).
Once the round starts, they start moving around the map,
fighting with each other and trying to achieve their respec-
tive goals. Each map in the game has many paths that CTs
and Ts may use to go from their base camps to the targeted
places and usually they use different paths for each round.
On these paths, there are certain positions that are critical
which act as battle grounds. We will call these positions
“critical positions”. Both the teams need to pass through
these “critical positions” to reach the bomb sites and hence,
both the teams possessing the knowledge of these positions
would plan to exploit them.

There is also a facility for playing this game offline. In
that case non-human players are needed to replace human
players. Following section provides brief overview of such
artificial game characters.

2.2 Bots in computer games

Bots in counter-strike, also called NPCs, are used to re-
place human players. Bots play as a part of the team and
achieve goals similar to humans. Bots simulate human play-
ers and are aimed to give game players the “illusion” of
playing against actual human player similar to the illusion
that the computer is playing the role of a human in the
turing test. Currently, bots used in counter-strike are pro-
grammed to find the path, attack opponent players, or run
away from the site if they have heavy retaliation or if their
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energy is less, providing an illusion that they are intelli-
gent. Similar species of bots are also used in many other
FPS games, with similar method of programming. Bots are
usually pre-programmed according to the requirements of a
game and play for or against human players. Bots usually
display two kinds of behaviors, namely static behavior, and
dynamic behavior. Static behavior of a bot reflects that it
has been hard-coded for a predefined set of outcomes. And,
dynamic behavior is a result of handling bots with the help
of AI learning techniques such as applying game-theoretic
approaches.

Human players while playing against or with computer
players, which are used to replace humans, have a few ex-
pectations which should be incorporated in the design of
game agents. Bob Scott listed out these expectations which
may act as guidelines for game developers[20]:

1) Predictability and unpredictability: Human actions
are unpredictable, and at the same time they can be very
predictable. These kinds of actions tend to provide surprise
elements to the game. For example, in FPS this means
that throwing granite for the purpose of distraction is un-
predictable. An example of predictable behavior is using
the same route repeatedly. Also, human actions are very
inconsistent, and sometimes they tend to behave stupidly.
Mimicking this form of behavior in a game can be difficult.

2) Support: Often, a computer player has to provide sup-
port to fellow human players. This can be as simple as guid-
ing human players through the game, or providing cover
during combat. An efficient method of communication is
necessary between computers and human players which is
hard to achieve.

3) Winning, losing and losing well: As we said earlier that
it is relatively easy to engineer a computer player that al-
ways wins or loses against a human player. The main focus
herein is believability of the opponents. Difficulty settings
provided in almost every game allow game players to set the
level of computer player whether it will be challenging or
not. Also, there are few games where the computer players
change their difficulty levels based on number of wins and
loses.

4) Cheating: Whether a game AI should be allowed to
cheat or not has always been debatable. Objections are
that AI will have unfair advantage over humans, but it also
true that computers are already at a disadvantage because
they are impassive. From our point of view, cheating is
acceptable as long as it does not get detected by a human
player keeping computer player interesting and challenging.

Nareyek[5] argues that modern day games pose prob-
lems for AI with the most common features like there
is a very limited time given for reasoning, dynamicity of
computer game environments is very high and competi-
tive, many game bots have incomplete knowledge of the
world, and game character or environment resources might
be restricted[5]. Furthermore, game AI has challenges to
face for different genres of games. In RPGs, there is a
need for more realistic and engaging NPCs. The complexity
level in reaching a common goal can account for determin-
ing what type of intelligence is required for the agents to
collaborate or cooperate, e.g., what kind of collaboration
strategies they follow, what kind of resources the team or
team members possess, and so on[6]. A challenge that FPS

games face with AI agents is in controlling the game charac-
ter by the player. These games employ a layered structure
of the artificial intelligence system which consists of lower
level and higher level layers. Functions like creating maps
for the terrain, generating sequential character animation,
and generating a list of weapons are handled by the lower
level layers. Responsibility for the higher level layers could
include agents assuming possibilities according to their cur-
rent strategy for reasoning and selecting their behavior for
example, whether the agent should run through the gener-
ated map in search of the opponent, or should it indulge
into combat, etc.[7]

Usually, bots in computer games are modeled using a
FSM, as shown in Fig. 2, where rectangle represents a pos-
sible state whereas leading edges show transition between
states. It is just a miniature representation of an actual bot
where many more such states exist with more complicated
transitions. FSM for bots is quite self-explanatory where
the bot begins by making initial decisions like game strate-
gies, buying weapon(s), and then start finding the enemies.
Once an enemy is found, it makes a transition to attack
state in which it fires bullets at the enemy. A bot may kill
an enemy; therefore, in that case it will again start search-
ing for the enemy as shown in Fig. 2. Also, a bot could be
in any of the above mentioned states and might get killed
by the enemy.

Fig. 2 A prototypical FSM for bots

Bartish and Thevathayan[21] suggest that using state ma-
chines in game development results into its design com-
plexity and code complexity as compared to belief-desire-
intention (BDI) agents. BDI agents are rational agents, as
[22] defines them, having mental attitudes of belief, desire
and intention that determine the agent-oriented systems
behavior. They used interplay as their test-bed for the
atomic bomberman game and found that state machines
had higher complexity as compared to agents in their ex-
periments. They explored that on adding more behaviors to
the original game, code complexity increases such that the
rate of change in complexity was on a significant (quadratic)
increase for the state machines, and linear increase for the
BDI.

FSM for bots are implemented using simple if-else or
switch-case statements usually using C/C++ programming
languages. Problem with this style of programming is that
their behavior becomes very predictable to even novice play-
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ers. Players will be able to predict their action and what
path they will use. The reason for this is that a game player
spends hours playing the same game and at same level and
therefore reaches a threshold at which the player can predict
the bots behavior because they repeatedly perform similar
behaviors due to their hard-coded logic. This makes the
game less interesting to an experienced game player and
eventually he may lose interest in the game.

There have been efforts to solve this problem using re-
inforcement learning algorithm such as Q-learning[23]. Re-
inforcement learning (RL) is a machine learning technique
in which agents learn to solve problems by taking actions
based on their interactions with the environment so as to
achieve maximum rewards (i.e., payoffs in game theory).
This learning approach is significant to the community of
computer game developers[24]. Many game applications
such as [25], and more have provided us with successful real-
time game strategies and algorithms in which bots evolved
are intelligent and more realistic. Problem on using rein-
forcement learning or other machine learning techniques is
that they are computationally expensive, difficult to imple-
ment and can lead to very random outcomes.

We address the learning problem with bots differently
with a simple, computationally efficient and easy to im-
plement algorithm – fictitious play, which is described in
Section 4. Following section (Section 2.3) provides overview
of game theory that leads to the explanation and working
algorithm of fictitious play.

2.3 Game theory

Game theory aims to model the situations in which par-
ticipants interact or affect each other′s outcome[26]. Each
individual is intelligent and capable of making rational de-
cisions. Each participant has an individual objective in
a shared system, wherein his decisions influence another′s
welfare. This leads to analyses of competition among these
individuals that is termed as “games”. Therefore, the
science that studies the mathematical models of conflict
and cooperation between the intelligent rational decision-
makers can be defined as “game theory”[27].
2.3.1 Basic concepts

A “Game” = N players, is a set of strategies for each
player, where {0|0 is the outcome of each “play” of the
game}, and 0 → {P |P is a payoff for each player}. A game-
matrix, also known as payoff-matrix is represented in Fig. 3.

In Fig. 3, player I and player II are the two players with
their payoff values as aij (typically for Player I) where
i = 1, 2, · · · , m, and j = 1, 2, · · · , n, and Si, Sj = Set of
strategies that player II and player I play, respectively.

A “zero-sum game” is one in which the summation of all
the players′ payoffs is zero, in other words, a player wins if
and only if the opponent loses. For example, the game of
Matching Pennies shown in Fig. 4 is a zero-sum game. Here
in Fig. 4, H = heads, and T = tails. Both the players have
to write down either H or T on a piece of paper. If both of
them turn out to be the same, then the second player has
to pay 1 (unit is dollar in this particular case) as a payoff
to the first one, and if the pennies written on the piece of
paper do not match, then the first one ends up paying the
same amount to the second player[28].

The representation of games can be done primarily in two

forms: first, the normal form (matrix form as in Figs. 3, 4,
and 6), and second is the extensive form. For example, the
extensive form for the game of Matching Pennies (Fig. 4) is
shown in Fig. 5. In Fig. 5, player I will play the first move
of the game (i.e., either he will play H heads or T tails) and
then player II will play the second move.

Fig. 3 Payoff matrix

Fig. 4 Game of Matching Pennies

Fig. 5 Matching Pennies in extensive form

2.3.2 Prisoner′s dilemma

Game theory is best demonstrated with the classical ex-
ample called “the prisoners dilemma”. Suppose that police
arrested Rob and Bob from the crime site and placed both
of them in an isolated cell. In lack of enough evidence po-
lice gave a fair deal to each of them. “You may choose to
confess (defect) or remain silent. If you confess and other
remains silent then you will be set free and other will get
10 years of prison. If you both remain silent then in lack
of evidence you both will get 6 months of prison and then
you both will be set free. But, if both of you confess then
both of you will get 5 years of prison. Finally, we will make
sure that both of you will not have any clue what choice
the other one has made”

Dilemma faced by both Rob and Bob is whether to con-
fess or remain silent in order to minimize their own time in
jail without the concern of other player. This scenario can
be summarized with payoff matrix in Fig. 6.

In Fig. 6, the “dilemma” faced by prisoners is that both
are better off when they confess, but in that case outcome
is worse than what they would have received if both of them
have remained silent. This puzzle reflects the conflict be-
tween individual and group rationality[29]. There are vari-
ous forms of this game which are being extensively studied
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by the game theorists. This is because this form of situation
arises in everyday interactions of human beings, and hence,
is studied extensively in economics, political science, and
sociology. For example, the two prisoners can be replaced
by two computer users who are competing for network us-
age. A good strategy for both users would be to back off
for few minutes; in that case delay will be 1min. If none
backup, then delay will go up to 5min. If one of them backs
up and other does not, then the one which backs up might
experience delay of 10 min while other might not have any
delay. Furthermore, the nature of prisoner dilemma and its
family as 2×2 games has aptly been discussed by Robinson
and Goforth[30].

Fig. 6 Prisoner′s dilemma

Game theory is not only used in developing computer
games, but also resolving disputes. One such attempt is an
online integration support environment which is described
with the help of argumentation techniques of Lodder com-
bined with the artificial/game theory approach of Belluci
and Zeleznikow that helps in making decision as to whether
or not the court case should be settled outside the court or
not[31]. This would lessen the burden of innumerous court
cases yet pending.

As a computer scientist we want to solve problems we face
in computer science using game theory while modeling them
as agents and multi-agents. We will use “non-cooperative”
game theory, a branch of game theory, for this research.
2.3.3 Mixed strategies

Mixed strategy has been formally defined by various
game theorists, such as [28]. Moulin[32] considers the game
of the battle of the sexes shown in Fig. 7.

Fig. 7 Battle of sexes

Husband (H) and wife (W) have to decide as to whether
they want to go to the football or to the opera, but they are
unable to decide. The husband prefers to go the football to-
gether with his wife and the wife prefers to go to the opera
together with her husband. Now, let us suppose that the
husband is unaware of his wife′s preferences, then in this
case, there can be two outcomes: either the wife prefers
to be with her husband (i.e., Fig. 7 (a)), or she prefers go-
ing alone to either of the two events (i.e., Fig. 7 (b)). This
is when we can define what a mixed strategy is. We can
conclude that there are two choices to be made: either go
to the football, or go to the opera. These are called pure
strategies. There exists another choice of strategies, such as
tossing a coin and then deciding what should be done if tail
comes (like going to the football), and what should be done

if head is up (like going to the opera). The third choice
of tossing a coin is known as a mixed strategy where it is
equally likely that they might decide to go for the football
or to the opera together[28]. Although this mixed strategy
is not stable and it is difficult to reach equilibrium. Ficti-
tious play is one of the methods of finding mixed strategy
equilibrium as discussed in the “fictitious play” section.

2.3.4 Fictitious play

John Nash proposed the concept of Nash Equilibrium
in 1950. Nash equilibrium in game theory is a solution
concept that follows a strategy wherein a player gives a
best response to another player′s strategy if there is no other
strategy that could be played that would yield a higher pay-
off in any situation in which the other player′s strategy is
played. In other words, the Nash equilibrium is the best
possible choice for a player to respond to opponent current
best possible action in the game as the player has no other
choice that changes the opponent payoff as a result[33].

Brown[1] first introduced fictitious play as an explanation
for Nash equilibrium play. He imagined that a player would
imulate play of the game in his mind and update his future
play based on this simulation; hence the name “fictitious
play”[1]. Monderer and Sela[34] explains fictitious play in
very simple terms that a belief-based learning process is a
game where a player selects the best response according to
his beliefs for the opponent and these beliefs get updated
based on the past observations. This helps in determining
the future behavior of the player. He says that a belief-
based learning process is like fictitious play (FP) process
in which each player has a belief that the opponent player
plays a stationary mixed strategy based on its past behav-
ior. If fictitious play converges to any fixed distribution of
probabilities then these probabilities are the Nash equilib-
rium for that particular game.

Formally, for the two agents (i and j) case, we say that
i maintains a weight function, Ki : Si → R+ . The weight
function changes over time as the agent learns. The weight
function at time t is represented by Kt

i which keeps a count
of how many times each strategy has been played. When at
time t − 1 opponent j plays strategy St−1

i , then i updates
its weight function with

kt
i(sj) = kt−1

i (sj) +

{
1, if st−1

j = sj

0, if st−1
j 6= sj .

(1)

Using this weight function, agent i can now assign a prob-
ability to j playing any of its sj ∈ Sj strategies with

Prt
i [sj ] =

kt
i(sj)∑

sj∈Sj

kt
i(sj)

. (2)

Player i then determines the strategy that will give it
the highest expected utility given that j will play each of
its strategy sj ∈ Sj with probability Prt

i [sj ]. That is, player
i determines its best response to a probability distribution
over player j′s possible strategies. This amounts to player
i assuming that player j′s strategy each time is taken from
some fixed but unknown probability distribution[35].

We demonstrate the working of fictitious play in Fig. 8.
Consider that the game of CS is being played by two types
of players: 1) terrorists represented as green players, and 2)
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counter-terrorists represented as blue players. Green play-
ers are using fictitious play algorithm ((1) and (2)) for pre-
dicting blue players′ moves. Fig. 8 shows the mental state
of the green agent which keeps track of blue players (A and
B). Blue players have two strategy options, going to BCA
or BCB. BCA and BCB are the bomb sites as described in
Section 2.1. The green player will observe the blue players′

strategy in each step and update its beliefs. Initially, green
player is indifferent about blue players strategy, therefore
K-Table consists of all zeros (Fig. 8 (a)). In first step of the
game, player A chooses strategy BCA and player B chooses
BCB. The green player using (1) updates its K-Table and
correspondingly can calculate Pr-Table using (2); results are
shown in Fig. 8 (b). After the first step, the green player be-
lieves that the chances of player A executing strategy BCA
is 1, while that of player B is zero. Similarly, green agent
computes the K-Table and updates corresponding Pr-Table
for next two steps, as shown in Fig. 8 (c) and (d). At the
end, green player observes that player A always go to BCA
while player B is playing mixed strategy with higher chances
of going to BCA. The green player can use these observa-
tions for making future decisions. Suppose the goal of the
green player is to kill as many opponents as possible, then it
should prefer to go to BCA location where it can find more
enemies, but if the goal is to plant the bomb, then it would
prefer to go to BCB location with less number of enemies.
Hereby, we demonstrated the working of fictitious play and
its practical application. Note that the algorithm is com-
putationally efficient. Only dataset we need to maintain in
memory is the K-table, and the Pr-table can be calculated
on the fly while making decisions. Detailed explanation
about the approach and results are presented in Section 4.

Fig. 8 Example of fictitious play

3 Related work

For computer games like Counter-Strike (CS), Half-Life,
and Quake which use bots, we find ourselves getting bored
by repeated playing of the same game because of the pre-
dictable behavior of the bots used in these games. In this
section, we are illustrating related application aspects of
computer game bots, and different approaches to game
problems.

Boumgarten et al.[36] implemented a bot that outper-
forms the existing automated players of a multiplayer real-
time strategy game. The bots evolved to perform game
actions including synchronizing attacks, assigning targets
with intelligence, and usage of influence maps, along with
using large-scale fleet movements. These bots examine pre-
viously played games in order to find similar games. It
does not matter whether these previous games ended in suc-
cess or failure. It then builds a decision tree based on the
factors that differentiate good and bad games. A fitness-
proportionate traversal is applied to this decision tree to
plan for the current game by finding a branch of the tree
which acts as a partial plan, and then the missing branches
are filled up randomly[36].

Cole et al.[37] argues that in game AI, programmers spend
a lot of time hard-coding the parameters of FPS robot
controllers (bots) logic and consequently, a considerable
amount of time is consumed in the computation of these
hard-coded bot parameter values. Therefore, to save the
computation and programmer time, he presented an effi-
cient method of using a genetic algorithm that evolves sets
of parameter values for the task of tuning up these pa-
rameters, and demonstrated that these methods resulted
in bots that were highly competitive when playing against
bots tuned by humans with expert knowledge about the
game. His team selected the combination of parameters to
tune, allowed them to tune while running the genetic algo-
rithm, evolved bots against each other while playing, and
finally, interfaced the best bots against the ones tuned by
an expert player to acquire the performance results[37].

Gamebots is a multi-agent system infrastructure derived
from an Internet-based video game which is used as a test-
bed for different multi-player games. The Gamebots do-
main provides several previously unavailable unique op-
portunities for multi-agent research. It supports multiple
multi-agent competitive tasks. Also, it provides an exten-
sion for built-in scripting language so that agents can be
faced with ever-changing multiple tasks to support long-
term research in continuation. Additionally, it allows creat-
ing multiple environments to appeal to a wider user commu-
nity. Moreover, it helps researchers to study human prob-
lem solving and investigating human-AI involving scenarios
by supporting humans-as-agents. And it public availability
in USA and overseas makes it convenient for game players
to access it across the globe[11].

An approach similar to ours was proposed with the use
of BDI agents by [38]. They suggested a model of bots dis-
playing human-like behavior using BDI agents by designing
two algorithms that are made to run simultaneously. The
first algorithm allows the BDI agent to perform the task of
observing the environment, and the second one is responsi-
ble for examination of the reasons towards the game playing
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strategies. To specify the bots′ beliefs, desires, and inten-
tions while playing the game, this model took inputs from
the actual game players. Also, they claimed that the agent
which would replace the bot would possess the four basic
properties of an agent: 1) autonomy: as no authority can
control the agent, its decision making on the basis of its
beliefs would be autonomous, 2) proactiveness: goals like
winning the round are very “definite” for an agent which
makes it proactive, 3) reactiveness: an immediate change in
plan as the need arises shows how fast an agent can react
to situations with time-crunch, and 4) social ability: audio
or video communication with teammates is required[38].

Broome[17], Cole et al.[37], and Zanetti and Rhalili[39]

independently experimented with different algorithmic ap-
proaches including genetic algorithms and neural networks
to evolve bots and let them evolve against the original ones
to get performance results with many computer games like
Half-Life, Quake-3, etc. Although a number of attempts
have been made to use machine learning techniques for bots,
yet all of them employ offline learning.

Wooldridge and Jennings[40] discuss some important the-
oretical and practical issues associated with intelligent
agent design and construction. These issues are arbitrarily
divided into three categories, namely agent theory, agent ar-
chitectures, and agent languages. Through this paper, the
needs of academia and industry have been equipped with
an insight of what an agent is and in what ways could the
agent be represented to study its properties. They discuss
the methods as to how can agents autonomously plan and
practice their actions while coordinating and cooperating
with each other in an environment where they negotiate
with dynamic and unpredictable situations. This review
provides us with a richer understanding of the questions
that are put forth in the following paragraph[40].

Wooldridge[41] discusses two key problems in detail where
he finds the following as challenges of game theory and the
theory of multi-agent systems through his vision – for a
particular game.

A similar effort was made by Temenholtz[42] who pro-
poses fundamental problem solutions for the agent to select
its action in a particular game with the help of competitive
safety analysis, and agents adopting desired behaviors for
that game with the help of theories of mediators which were
documented in this proposal[42].

In addition to this, we know that fictitious play gener-
ally converges to a pure Nash equilibrium for some types
of the games when played repeatedly, but it is not always
necessary that we culminate with one[43]. Therefore, Gerd-
ing et al.[44] made certain analyses of equilibrium strate-
gies for the intelligent bidding agents which when partici-
pated in multiple, simultaneous second-price auctions em-
pirically showed that using best-response fictitious play,
these strategies did not converge to pure Nash equilibrium.
This result drove their attention towards mixed Nash equi-
libria, and by applying a learning approach called smooth
fictitious play, they were able to approximate the equi-
librium numerically. Furthermore, when expected utility
equations were combined with this learning algorithm, they
were successful in computing mixed strategies without any
auction-simulations. The final results that they derived
showed the ε-Nash mixed strategies convergence with their

strategies[44].

Reinforcement learning (RL) is a machine learning tech-

nique where an agent learns to solve problems while

interacting with the environment[24]. McPartland and

Gallagher[25] suggested a learning algorithm to investigate

the extent to which RL could be used to learn basic FPS

bots behaviors. The team discovered that using RL over

rule-based systems rendered a number of advantages, such

as: 1) game programmers used minimal code for this par-

ticular algorithm, and 2) there was a significant decrease

in the time spent for tuning up the parameters. Also, the

applied algorithm was used to successfully learn the bots be-

haviors of navigation and combat, and the results showed

that by changing its planning sets of parameters, different

bots personality types could be produced. Thus, the paper

suggested how an agent can learn to be a bot with the help

of RL in shooter games.

Patel[23] selected Q-learning, a reinforcement learning

technique, to evolve dynamic intelligent bots, as it is a sim-

ple, efficient, and online learning algorithm. Machine learn-

ing techniques, such as reinforcement learning, are known

to be intractable if they use a detailed model of the world,

and also require tuning of various parameters to give sat-

isfactory performance. Therefore, they opt to examine Q-

learning for evolving a few basic behaviors viz. learning

to fight, and planting the bomb for computer game bots.

Furthermore, they experimented on how bots would use

knowledge learned from abstract models to evolve their be-

havior in more detailed model of the world. Their results

demonstrate the feasibility of learning techniques for con-

trolling the behavior of bots and at the same time making

them unpredictable to game players.
In the following section, we present our approach towards

improving the behavior of game bots.

4 Approach

To avoid use of hard-coded bots with static behavior,
one needs to use a learning technique, which can adapt
bots′ behavior to the play of human players. We propose
using the game theoretic based learning algorithm called
fictitious play for developing sophisticated bots. For testing
fictitious play on bots we needed a simulation environment.
We developed a scaled-down abstraction of Counter-Strike
in Java and have simulated bots in this very environment.
The following section outlines the experimental simulation
of the CS game and corresponding results.

4.1 Simulation

The miniature version of Counter-Strike, as shown in
Fig. 9, is our simulation for the game. This simulation is
extended from [23] to use fictitious play. Here we have at-
tempted to build an environment that simulates a classic
FPS game where two sets of autonomous agents are in-
volved in a combat.

In Fig. 10, the boundary of the map restricts the agents′

movement to the confined space. We have different color
agents: blue agents and green agents representing the CT
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and T agents respectively, and they navigate through the
brick walls running through the boundary of the map, and
the white paths in between. These agents imitate the be-
havior of counter-terrorist and terrorist in the CS game.
Also, there are two bomb sites: BCA and BCB at the di-
agonally opposite corners of the map which represent the
bomb sites A and B from the CS game in Fig. 1. In ad-
dition to this, TC and CTC are the terrorist camp and
counter-terrorist camp, respectively, for the green and blue
agents. From this point, we called terrorist as green agents
and counter-terrorist as blue agents. There are three alter-
native scenarios in which blue agent and green agents can
play (see Section 2.1). We choose them to emulate diffusion
scenario for the agents. Before the game starts, we will de-
cide the number of blue agents and green agents. The goal
of green agents would be to plant a bomb at either one of the
two bomb sites or to kill all the blue agents. And the blue
agent′s goals would be to diffuse the bomb if planted and
to kill all the green agents. During the course of achieving
their respective goal both the sets of agents will fire missiles
at each other, if they encounter.

Fig. 9 Initial result

Fig. 10 Simulated map of Counter-Strike

Results of the game can be determined by following cases:
1) Green team wins if all the blue agents are dead, or

bomb is planted.
2) Blue team wins if all the green agents are dead, or

bomb is not planted.

4.2 Experimentation

In an actual game of CS, an experienced player while
playing against bots will eventually get bored after playing
the game for long periods as the player can easily predict
the next move of the opponent agents which accounts for a
static playing strategy. Hence, we propose using the game

theoretic based approach called fictitious play wherein the
agents dynamically change their strategy of playing based
on its opponents′ past observations thus giving the human
player a feeling of an active opponent similar to the player.
So, for this, we have prepared a simulation, described in
the Section 4.1, of the game of CS in which there are two
teams, blue and green.

We experimented to improve the behavior of green agents
while controlling blue agents′ behavior manually. Blue
agents have fixed strategic probabilities of visiting the bomb
sites, for instance, 80% of the times go to BCA and 20%
of the times go to BCB. Green agents having no knowledge
of these fixed strategies of blue agents use fictitious play to
learn their opponents′, i.e., blue agents′ behavior. They use
the following (3) as fictitious play algorithm (also described
in Section 2.4):

kt
green(sblue) = kt−1

blue(sblue) +

{
1, if st−1

blue = sblue

0, if st−1
blue 6= sblue.

(3)

Using this weight function from (3), green agents assign
a probability to blue agents playing any of its sblue ∈ Sblue

where Sblue = {BCA, BCB} strategies with probabilities
shown in (4).

Prt
green[sblue] =

kt
green(sblue)∑

sblue∈Sblue

kt
green(sblue)

. (4)

Based on these learned probabilities Prt
green[sblue], green

agent decides his own strategies, i.e., whether to go to BCA
or to BCB.

4.3 Results

In our simulation, we ran experiments with five green
agents (i.e., terrorists) and five blue agents (i.e., counter
terrorists).

For the initial experiment the green agents stored the
opponents′ strategic probabilities and took the intuitive de-
cision of going to the bomb sites with lower probabilities.
This is similar to what human players would have done,
i.e., going to the bomb site with fewer number of enemies,
and therefore we call this the “intuitive” strategy. Purpose
of this experiment was to test the effectiveness of fictitious
play for bots, which to our knowledge is not done before.
Hence, our initial experiments test the performance of green
agents using fictitious paly against the same green agents
selecting strategy randomly.

Fig. 10 is a graph plotted with game round number
against the ratio of win; i.e., ratio of number of rounds
won by the green agents to the number of rounds won by
the blue agents. Simulation was run for approximately 1000
rounds. A round is a game played to completion with out-
comes of a bomb planted, defused, or agents sacrificed. The
graphs shows 1) the green agents and the blue agents play
at random (i.e., not mindful of opponents′ strategies), and
2) the green agents are playing fictitious play against blue
agents playing randomly. The figure imply that when green
agents play at random, they win fewer rounds than when
they follow fictitious play. It is also evident from this graph
that more number of games is won on the average, and there
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is a significant improvement when the green agents play fic-
titious play against randomly playing blue agents. When
fictitious play is played by green agents, the graph in Fig. 10
shows the highest recorded ratio value of 5 at round number
6, and second highest recorded ratio value of 3.48 to be pre-
cise for the 112th round of the game. After approximately
560 rounds, the result of the game becomes consistent. Ta-
ble 1 shows values of the ratio and game round numbers
that are shown in Fig. 11. After initial fluctuations, value
of ratio of the rounds won remains approximately 2.5, sug-
gesting that there are no further significant improvements.

Fig. 11 Playing against 1/6 probability of blue agents

Furthermore, we conducted nine more experiments in
groups of three. For each group of experiments, the ratio
of blue agents′ visitation probability to the bomb sites is
changed. It is 1/6, 2/6, and 3/6 respectively for each of the
three groups. That is, for the first three sets of experiments,
blue agents will directly go to BCA with 1/6th probability,
and for rest of the time it will go to BCB. During each of
these experiments, green agents are using fictitious play for
deciding which bomb site to visit. Furthermore, we also
tested whether the intuitive decision made by the agents
was actually the best decision. In order to test that, we ran
three simulations in each set by altering the intuitive deci-
sion, hence total of nine. Instead of going to the bomb site
with lower probability, now the agents will go to bomb site
with higher probability. And finally, we compared these
results against the blue agent′s decision of going to each
bomb sites with equal probability.
4.3.1 Playing against 1/6 probability of blue

agents

In this group of experiments, blue agents′ visitation prob-
ability was set to 1/6, i.e., they first navigate to BCA 1/6
times and to BCB 5/6 times. We conducted three exper-
iments by programming green agents, such that 1) select
bomb site with high value of Prt

green[sblue], 2) select bomb
site with low value of Prt

green[sblue], and 3) select both bomb
site with equal probability. Hereby, we conducted three ex-
periments altering the decision of green agent.

Fig. 11 shows the results of the experiment. Agents show
highest performance while going to bomb site where the
probability, Prt

green[sblue] , of blue agents was lower. These
results support our initial assumption that agents are better
off going to bomb site with lower probabilities values. It is
also evident from the results that agent is performing poorly

while going to bomb site with higher probability value. This
is because green agents will face high resistance from blue
agents on the bomb site with high probability value. These
results signify that the agents are learning to make decisions
which humans consider as a matter of common sense.

4.3.2 Playing against 2/6 probability of blue
agents

Similar to the experiment in Section 4.3.1, we set the

blue agents visiting probability to 2/6, i.e., 1/3 for this set

of experiments. Again we experiment with three decisions

for green agents, as listed in Section 4.3.1.
Results shown in Fig. 12 are similar to previous results

where agent is performing better while going to bomb site
with lower probability and worst while going to bomb site
with higher probability. There is significant drop in average
performance of the agents in all three cases due to decrease
in randomness of blue agents. In previous experiment blue
agents′ visitation probability was 1/6 compared to 2/6 in
current experiment. Agents gave better performance in the
former experiment because they got more opportunity to
plant the bomb; 1/6 time better chances, and now they
might be getting involved in combat more often than in
former case. Note that we are still getting better results by
playing fictitious play then playing randomly.

Fig. 12 Playing against 2/6 probability of blue agents

4.3.3 Playing against 3/6 probability of blue
agents

For the last set of experiments, we set the blue agents
visitation probability to 3/6 (=1/2) which is equivalent to
say that they are playing randomly. Results for three differ-
ent decisions by green agents are shown in Fig. 13. As seen
in previous experiments, agents visiting the locations with
lower probability show better performance. Average per-
formance of agents was less than previous two experiments
because blue agents are visiting both the location with equal
probability, and hence lesser number of chances for green
agents to plant the bomb. A difference in the pattern of
bots′ evolution is seen in this experiment, wherein the per-
formance of FP playing agents is close to random agents,
since the agents observing opponent′s random probability
will also learn to behave randomly.
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Fig. 13 Playing against 3/6 probability of blue agents

Nevertheless, all the experiments show that irrespective
of opponents′ strategy, there is a dominating strategy for
agents playing FP. One of the goals of using FP for evolv-
ing green agents was to make the agents play more unpre-
dictably which is not directly visible from the results. Al-
though, if one considers the blue agents are three different
players having three different strategies, then it can be in-
ferred that agents using FP will exhibit different behavioral
patterns. Even for a single player, if it changes strategy for
subsequent games, fictitious play algorithm will compute
probabilities accordingly and hence, different behaviors for
different strategies will be highlighted. Therefore, we can
conclude from these results that our initial problem defini-
tion that over the time game players gets bored is addressed.
Every time a player would play a game, our agents playing
fictitious play will evolve differently.

There are many possible extensions. In the following
section, we outline one possible approach. However, this
extension lies outside the scope our current experimental
framework.

4.4 Future work

Prt
green[sblue] is still the probability of only one agent at

a time. But, bots will be facing groups of agents and their
decision should be based on group, not just one individual
agent. Hence, to predict the group behavior, we will take
an average of Prt

green[sblue] for all opponent agents. So, the
group probability will be:

Prt
green[sgroup] =

n∑
i=0

Prt
green[si]

n
(5)

where n = number of blue agents.
Based on this probability , Prt

green[sgroup], an agent can,
up to some extent, predict what is the major visitation site
of the opponents. So, based on these, the agent can have
following two strategies which it can adopt:

1) Going to the bomb site with lower Prt
green[sgroup], or

2) Going to the bomb site with higher Prt
green[sgroup].

We do not know for certain which of these two strategies
might be better for an agent. To test these strategies we
will run three experiments in each of which agent will use

different strategies as done in Section 4.3. Following are the
three experiments:

1) Generating the bomb sites randomly.
2) Taking into consideration the bomb site with lower

Prt
green[sgroup].
3) Taking into consideration the bomb site with higher

Prt
green[sgroup].
Another aim of the experiment would be to see how fast

a bot can adapt to the opponents changing strategies using
fictitious play. For this, we will change the blue agents′

strategy after a cycle of few rounds and will observe the
change in strategy of green agents based on this. As an
end product, we expect to generate a training graph with a
spike in it whenever there is change in opponents′ strategy.
This experiment will decide level of unpredictability in an
evolved bot using fictitious play.

5 Conclusions

Modern computer games emulate various forms of ar-
tificial behaviors in game characters so that they appear
intelligent to game players. Traditionally, one of the most
common methods of achieving such artificial behavior is
cheating, such as increasing the enemy′s energy or some
other power to increase the difficulty levels. Most of the
AI rules are hard coded in the game′s logic. Once under-
stood by an experienced game player, the game becomes
very predictable to him. On the other hand, game devel-
opers had dedicated considerable time in configuring these
hard coded parameters. As a solution to this problem, this
paper presents the use of the state-of-the-art game theory
based learning technique called fictitious play in computer
games.

In order to limit the domain, we concentrated on improv-
ing the behavior of a type of an artificial character called
bots, specifically in first-person shooter game of CS. Bots
in CS are used to replace human players. Bots play as a
part of the team and achieve goals similar to humans, i.e.
fighting against enemies or plant the bomb at the bomb
sites. We presented our approach on the use of the learn-
ing rule of fictitious play for improving behavior of bots.
To test our proposed methodology, we developed a virtual
simulation environment, similar to the game of CS, consist-
ing of two agent teams-blue and green. Blue agents were
controlled manually while green agents used fictitious play
to understand the opponent′s strategy. With this approach
we have been able to evolve bots (green agents) that will se-
lect future strategies based on their past experiences. This
has made the bots more unpredictable to a game player and
thereby making the game more interesting. The bots using
fictitious play also showed better performance compared to
bots playing randomly. This work focuses on improving be-
havior of bots using fictitious play, but in fact this is a very
simple strategy, which can be applied to all the problems
for which predicting the opponent′s behaviors is required.
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