
Robot Programming - From Simple Moves to
Complex Robot Tasks
F. M. Wahl and U. Thomas

Institute for Robotics and Process Control
Technical University of Braunschweig

1 Introduction

The development of robot programming concepts is almost as old as the develop-
ment of robot manipulators itself. As the ultimate goal of industrial robotics has
been (and still is!) the development of sophisticated production machines with the
hope to reduce costs in manufacturing areas like material handling, welding, spray-
painting and assembly, tremendous efforts have been undertaken by the interna-
tional robotics community to design user-friendly and at the same time powerful
programming methods. The evolution reaches from early control concepts on the
hardware level via point-to-point and simple motion level languages to motion-
oriented structured robot programming languages. Comprehensive surveys on the
historical development of robot programming may be found in [1, 2]. A character-
istic feature of robot programming is, that usually it is dealing with two different
worlds, (ref. to Fig. 1): (1) The real physical world to be manipulated, and (2) ab-
stract models representing this world in a functional or descriptive manner by pro-
grams and data. In the simplest case, these models are pure imagination of the
programmers; in high level programming languages, e.g. it may consist of CAD
data. In any case, commands based on some model are causing robots to change
the state of the real world as well as the world model itself. During a sequence of
actions both worlds have to be kept consistent to each other. This can be ensured
by integrating internal robot sensors as well as external sensors like force/torque
and vision sensors. Already in the early seventies research groups started to focus
on so-called task-oriented robot programming languages. One of the first examples
are IBM’s AUTOPASS system [3], the RAPT language developed at the Univer-
sity of Edinburgh [4] and the LAMA system proposed by MIT [5].

commands
actions

observati
sensor
 feedback

commands

ons

Computers
programs,data

Work space

objects
e.g. work pieces,

tools, etc.

Robots

Sensors

internal
robot
states

abstract models physical world

Figure 1: General robot programming paradigm.

The basic idea behind these approaches is, to relieve the programmer from know-
ing all specific machine details and free him from coding every tiny motion/action;
rather, he is specifying his application on a high abstraction level, telling the ma-
chine in an intuitive way what has to be done and not how this has to be done. This
implicit programming concept implies many complex modules leading to auto-
mated robot programming. E.g., there is a need for user-friendly human interfaces
for specifying robot applications; this may range from graphical specifica-
tions/annotations within a CAD environment, till to spoken commands or gestures,
interpreted by some speech understanding or vision system respectively. These
commands have to be converted automatically into a sequence of actions/motions
by a task planning system; at the Technical University of Braunschweig we devel-
oped HighLAP [6, 7], which will be outlined below.

During the course of the years it turned out, that the most difficult part in automatic
robot programming is the execution and control of automatically generated ac-
tion/motion sequences including automated generation of collision-free paths and
force controlled mating operations. Besides some first simple industrial applica-
tions, like in 4-DOF assembly of PCBs, this still is subject of international ongoing

research. The necessary prerequisites from control theory have been developed
during the last decades; they are ready to be used. Already in the early eighties
Mason has shown, how to control robots, when they are in contact with their envi-
ronment [8]. His concept is outlined below, when we are describing the concept of
skill primitives as versatile interface between programming and control. However,
before diving into advanced issues of implicit robot programming, we briefly will
discuss the state of the art of explicit, i.e. motion oriented programming techniques
in the following section.

2 Modern Explicit Programming Concepts

The development of modern motion-oriented robot programming languages started
in the mid seventies. Languages like VAL [9] (the predecessor of Adept’s V+) and
AML [10] are examples of early structured robot programming languages, which
already incorporate sophisticated data structures. As some robot vendor’s proprie-
tary languages shipped today are still far behind these early developments, many
research laboratories developed their own languages. Most of these languages are
extensions of wide-spread programming languages. E.g., at our laboratory we
embedded robot functionality in C and C++ to build the object oriented robot pro-
gramming language ZERO++ [11]. Motion-oriented robot programming languages
nowadays are indispensable in industrial robot applications; in research they often
constitute the basis of higher level robot programming concepts.

One of the essential ingredients of modern robot programming languages is the
thorough usage of the frame concept. I.e., all robot poses and object locations as
well as motions are expressed in accordance with human spatial intuition in terms
of Cartesian coordinates. By using homogeneous coordinates, translations and
rotations can be computed by multiplying points or coordinate systems in 3D
Euclidian space with one single 4x4 transform matrix. As a matter of course, lan-
guages using the frame concept should supply programmers with a multitude of
built-in functions to specify such transforms. ZERO++, e.g., provides many func-
tions to convert x,y,z-coordinates and/or Euler angles or RPY angles into transform
matrices and vice versa. Operator overloading and robotics specific math-functions

allow a simple notation of transform matrix equations, etc. For the application
programmer (who at least in the industrial world usually is not an expert of robot-
ics) the details of the robot hardware have to be hidden behind well-defined easy-
to-use software interfaces. Respecting this, from the application programmer’s
point of view, also the difference between programming serial or parallel robots
should diminish!

Usually, advanced applications are heavily dependent on sensor integration of
internal as well as external sensors, like force/torque and vision sensors. The robot
programming implications of this led in the early eighties to the development of
the so-called monitor concept [12]. Monitors are small pieces of concurrent user-
defined or built-in programs, heavily communicating with the users’ applications
and the motion pipelines of robot control systems. I.e., monitors are reading a
specific sensor or sets of sensors in specified time intervals; in dependency of the
sensor values the monitors are modifying via the motion pipeline the robots’ paths
‘guided motion’ or are triggering some action (e.g., an immediate stop of motion,
‘guarded motion’). Usually, sensor integration requires from the robot programmer
an in-depth understanding of the robots’ functionality. Thus, it is very important to
supply programmers with powerful programming language constructs to ease such
difficult tasks. Fig. 2 shows a simple path following example keeping a constant
distance between the robot’s tool center point and the surface of the corrugated
sheet of iron. As can be seen, this application can be coded with just a few lines of
ZERO++ code. The main section simply defines ‘start’ and ‘goal’ positions. After
moving the robot to the ‘start’ position in joint interpolation mode, it is moved in
Cartesian interpolation mode to the ‘goal’ position while a ‘Monitor’ has been
activated. The ‘Monitor’ function is reading ultrasonic sensor values, which are
used to compute ‘delta’ frames used by the ZERO++ Kernel to continuously mod-
ify interpolated frame values between ‘start’ and ‘goal’. In similar ways any func-
tional dependencies of some path properties (speed, force, torque, distance, etc.)
can be specified in a textual programming manner, which, however, is cumber-
some and error-prone. Unfortunately, up to now there is a lack of off-line tools
supporting robot programmers to specify robot path properties comfortably.

void GuidedMotion()
{
 RX60 robot();
 FRAME start=Trans(100.0, 20.0, 70.0);
 FRAME goal=start*Trans(0.0, 400.0, 0.0);

 robot.Move(start,ROBOT::JointInterp);
 robot.Move(goal,MonitorFunction,ROBOT::FrameInterp);
}

int MonitorFunction(FRAME &delta)
{
 static USSENSOR sensor;
 double height;

 height=sensor.GetValue();
 if(height!=DIST)
 delta.TransZ(DIST – height);
 else
 return IGNORE;
 return CHANGE;
}

Figure 2: Usage of monitors for sensor guided motion.

The skill primitives discussed below may be considered as an extension and gener-
alization of the monitor concept.

3 CAD Based Program Specification

As mentioned above, for CAD based program specification sophisticated, intuitive,
and easy to use software tools are necessary. As the design engineer knows about
the geometry of the objects to be assembled, the appropriation of some kind of
symbolic spatial relations (SSR) is obvious. Ambler and Popplestone [13] defined
a set of SSRs, which consists of four different relations. E. g. to specify, that the
shaft axis of the bulb shown in Fig. 3 should align with the hole axis of the rack, a
design engineer may specify the symbolic spatial relation ‘SHAFT1 OF BULB FITS

HOLE1 OF RACK’. This implies, that only two degrees of freedom between the two
objects remain: a possible rotation around the hole axis and a translation along the
same axis. To reduce further degrees of freedom, the user might add other sym-
bolic spatial relations for instance a ‘FACE AGAINST FACE’ relation. In this case it

means, that the lower ‘FACE2 OF BULB’ lies against ‘FACE2 OF RACK’, which is
inside the socket and is perpendicular to the hole axis. Herewith, just one degree of
freedom is left, namely a rotation around the hole axis. To specify the assembly
group completely, every degree of freedom has to be eliminated in a similar way.
Fig. 3 shows some parts of an automotive headlight assembly with corresponding
SSRs. The easiest way to generate the spatial relations explicitly, is to interactively
let the design engineer click on the surfaces, e. g. shafts, holes and faces in his
CAD environment in order to specify appropriate features (i. e. coordinate sys-
tems) and subsequently allow him to select suitable relations between these fea-
tures, e. g. fits, against, coplanar. Fig. 4 displays the user interface of the assembly
planner HighLAP, which has been embedded in the commercial robot simulation
system Robcad. The system supports the user while he is specifying the relations in
such a manner, that it signals contradictory specifications and shows the user re-
maining degrees of freedom between assembly objects.

Figure 3: Parts of a headlight assembly with SSRs

The symbolic spatial relations specifying an assembly also can be used for the
automatic calculation of possible assembly plans as well as for planning of appro-
priate sensors, which may guide the assembly process during execution. This kind
of specification provides an easy to use interactive graphical tool to define any
kind of assembly; the user has to deal only with a limited and manageable amount
of spatial information in a very comfortable manner.

Figure 4: Specification interface of the assembly planner HighLAP

4 Towards Automated Robot Programming

An ultimate long-term aim is an almost automated programming and execution of
assembly processes. A system should decide which order is the most appropriate
order for assembly considering certain criteria like geometric feasibility, the me-
chanical stability of subassemblies, the degree of parallel execution, the number of
necessary reorientations of parts during execution, types of fixtures, tools etc. An

assembly consisting of n-parts in general may have up to possible)12(1 −−n

assembly sequences. Thus, automatic generation of assembly sequences has been
shown to be a NP-complete problem [14]. In the assembly planning community,
the assembly by disassembly philosophy became generally accepted [15]. Hence,
starting from the complete assembly and removing one part after another leads to
some sequences in reverse order. Evaluating these sequences considering the above
mentioned criteria yields an optimal assembly sequence. For some parts of the
indicator light plus headlight assembly the calculated result is depicted in Fig. 5.

Figure 5: The assembly plan for parts of an automotive headlight and

 indicator light assembly

As mentioned above, while removing parts of the assembly, a sophisticated system
has to evaluate the geometric feasibility of removal operations carefully. The sym-
bolic spatial relations explained in the previous section could be used to compute
possible mating directions. A superior method, which we are developing currently,
applies the configuration space approach proposed by [16] to 3D. Fig. 6 right

shows a bulb light and its corresponding bayonet socket of an automotive indicator
light. Based on the configuration space representation (Fig. 6 left) a suitable mating
direction for the bulb can be computed [17].

Figure 6: Calculation of mating direction for the bayonet securing task

Once a suitable assembly sequence has been generated each hyperarc in the graph
shown in Fig. 5 represents an assembly cycle, which contains a grasp strategy, a
transfer motion path and a mating/joining strategy. Focusing on the mating/joining
strategy, each hyperarc has to be considered as a complex robot task. An automatic
robot programming system has to recognize the correct robot task type and should
map it to a sequence of elemental robot operations [18, 6]. Robot tasks may range
from simple object placing tasks, screwing tasks, peg in hole tasks, to rather com-
plex tasks like bayonet securing tasks. The applicable robot tasks are designed and
programmed off-line and stored as functional modules. They automatically can be
loaded and parameterized (goal positions, mating directions, etc.) by the assembly
planner. While execution is in progress, the robot comes into contact with its envi-
ronment. Thus, determination of contact state transitions is essential. Due to un-
certainties in the work space, which may arise from modelling with limited preci-

sion or unpredictable displacements, all possible contact state transitions need to be
represented in a so-called skill primitive net. During execution of the robot task
one path through the skill primitive net is traversed. Each time a skill primitive
(described in detail below) is executed by the robot control system, it changes the
contact state of the moved object with its environment.

5 Skill Primitives – Interface Between Programming
 and Control

As mentioned above, skill primitives can be considered as a sophisticated interface
between textual or automated robot programming and robot control. Skill primi-
tives extend the known compliance frame concept introduced by Mason [8]. In
order to uniquely determine robot motions, positions/orientations, velocities (linear
and rotational) and forces/torques in 6 DOF have to be specified in terms of a 6x6
compliance frame matrix C. The reference coordinate system for the 6 DOFs is
called center of compliance CoC; it is defining the task space. For a compliant
motion, some of these DOFs are constrained, others may be free. E.g., for the clas-
sical peg in hole problem along the peg’s rotational z-axis, the diagonal of C
equals

Tfreedconstraine),,

torquex ,Nm0,m/s

T
rotrotrottranstranstrans

dconstrainefreedconstrainedconstraine

zyxzyx

,,,(

),,,,,(diag

=

=C

For sake of simplicity we assume the CoC at the tip of the peg. A simple control of
an insertion (neglecting the possibility of jamming) could be, to select the follow-
ing desired values for robot control in the Cartesian task space

T
norientatiotorque

velocityforceforce

)zy

zyx

rad1.0Nm,0

01.0,N0N,0(diag

==

=====C

As no time limit for the motion is specified, the robot holding the peg would col-
lide with the object containing the hole at some point. I.e., for proper operation, in

addition to the CoC and C some stopping condition s has to be specified, which
may be defined as some Boolean expression. In our simplified example this could
be

s)5time_outOR >rad1.0ORmm340(>>= norientatioposition zzs

In our laboratory currently we are developing a Cartesian control architecture able
to interpret commands in the above given form. The basis of our implementation is
a flexible and modular middleware for robot control and automation applications.
First skill primitives, e.g. for placing polyhedral objects on some unknown surface,
have been developed by means of Cartesian so-called add-on force/torque control-
lers [19].

6 An Example of a Force Controlled Robot Task

In order to prove the suitability and the strength of skill primitive based robot task
implementation, we have chosen a bayonet securing task of an automotive light
bulb. In our experimental set up, we have used a Stäubli 6 DOF robot, equipped
with an external JR3 force/torque sensor mounted on the robot’s wrist. The robot’s
control unit is connected via TCP/IP to a PC equipped with the JR3 interface card;
the PC is running the control process. The Stäubli robot control system receives
and executes each 16 ms a move operation.

Fig. 7 shows the light bulb (4) to be secured by means of a bayonet socket (6).
Assuming, that the rotational axis of the bulb is fairly aligned with the axis of the
socket, the decomposition of the robot task into skill primitives leads to the fol-
lowing four states (Fig. 8): Moving from free space into contact state (a) until the
first electrical contact (1) is pressed by base (4) of the bulb; (ref. to Fig. 7), while
minimizing lateral forces arising from small displacements. The next skill primi-
tive moves the bulb further down in z-direction until the central electrical contact
(2) is pressed with 15N.

Fig 7: Light bulb with

 bayonet socket

Force oscillations with up to 5N are due to friction
and due to the slow robot control loop available in
our current experimental set up. During execution
of the next skill primitive the spring remains
pressed while the robot is changing the bulb’s
orientation around the z-axis (until a high torque is
produced, because nipple (3) of the bulb has
reached its stop position in the socket) yielding
state (c). Aiming the final position corresponding
to state (d), the robot pulls the bulb slightly
backwards, so that the bulb is properly secured
into the socket. Measurements of forces and
torques during this sequence of skill primitives are
shown in Fig. 9.

Figure 8: The skill primitive sequence of the bayonet securing task

Figure 9: Measured forces and torques during the execution of bayonet

 securing task

7 Conclusion

The purpose of this paper subject to limited space has been two-fold: (1) Revisiting
major developments and concepts in robot programming and discussion of its
current state and (2) indicating insufficiencies and further developments. As has
been pointed out, there is a tremendous gap between commercially available robot
programming languages and methods developed in research laboratories all over
the world. Although powerful motion oriented programming concepts – like the
above mentioned monitor concept - are known since almost three decades, they
rarely have found their way to products. Most commercial systems still offer sim-
ple set_value commands for specifying properties of robot paths, like
set_speed(…), set_force(…), etc. specifying the properties of the next path seg-
ment(s) by some given (constant) parameters. To our knowledge, there is no single
commercial robot programming language available, allowing flexible specification
of functional interdependencies of path properties, e.g., applied forces/torques as
function of position/orientation, etc. Since the early work of Mason we know, how
such principles can be implemented in a task oriented manner. In the meanwhile,
there also is a huge body of control concepts available, ready to support functional
sensor guided motion applications. In our opinion, the skill primitive concept out-
lined above offers a versatile interface between programming and control. How-
ever, we recognize a big backlog for developing tools to support motion-oriented
sensor-guided robot programming by hand.

As has been pointed out, skill primitives also can serve as a powerful interface
between automated robot programming and robot control. Whereas the art of as-
sembly planning already has reached a mature level, autonomous execution of
automatically generated assembly plans still is in its infancy. In this paper and
elsewhere we have shown some first examples, how to implement basic robot tasks
(placing objects, securing light bulbs into bayonet sockets, etc.); they are ready to
be used in automated assembly robot programming environments. Nevertheless,
there are yet many open issues to be solved in order to achieve fully automated
assembly planning/programming and sensor guided execution of assembly proc-
esses. Certainly, one big important research area in the future will concentrate on

automated sensor planning simultaneously performed with assembly planning. We
expect fully automated robot programming and execution for complex assemblies,
robust enough to be applied in industrial applications, will not become true before
the end of this decade.

References

[1] C. Blume, W. Jakob: Programmiersprachen für Industrieroboter. Vogel-

Verlag , 1983.
[2] P. G. Ránky, C. Y. Ho: Robot Modelling – Control and Applications with

Software. IFS Ltd./Springer, 1985.
[3] L. Lieberman, M. Wesley: AUTOPASS: An Automatic Programming

System for Computer Controlled Mechanical Assembly. IBM J. Res. Dev.
Vol. 21, No. 4 , 1977.

[4] R. Popplestone, A. Ambler, I. Bellos: An Interpreter for a Language De-
scribing Assemblies. Artificial Intelligence, Vol. 14, No. 1, 1980.

[5] T. Lozano-Pérez, P. H. Winston: LAMA: A Language For Automatic
Mechanical Assembly. International Joint Conference. Artificial Intelli-
gence, 1987.

[6] H. Mosemann, F. M. Wahl: Automatic Decomposition of Planned Assem-
bly Sequences Into Skill Primitives. IEEE Transactions on Robotics and
Automation, Vol. 17, No. 5, 2001.

[7] U. Thomas, F. M. Wahl: A System for Automatic Planning, Evaluating
and Execution of Assembly Sequences for Industrial Robots. IEEE/JR
International Conference on Intelligent Robots and Systems , 2001.

[8] M. T. Mason: Compliance and Force Control for Computer Controlled
Manipulators. IEEE Transactions on Systems, Man, and Cybernetics, Vol.
11, No. 6, 1981.

[9] B. E. Shimano: VAL: A Versatile Robot Programming and Control Sys-
tem. COMPSAC 79, 1979.

[10] R. H. Taylor, P. D. Summers, J. M. Meyer: AML: A Manufacturing Lan-
guage. International Journal Robotics Research Vol. 1, No. 3, 1982.

[11] C. Pelich, F. M. Wahl: ZERO++: An OOP Environment for Multiproces-
sor Robot Control. International Journal Robotics and Automation, Vol.
12, No. 2, 1997.

[12] M. A. Lavin, L. I. Lieberman: AML/V: An Industrial Machine Vision
Programming System. International. Journal Robotics Research Vol. 1,
No. 3, 1982.

[13] A. P. Ambler, R. J. Popplestone: Inferring the Positions of Bodies from
Specified Spatial Relationships. Artificial Intelligence, Vol. 6, 1975.

[14] L. Kavraki, J.-C. Latombe, R. H. Wilson: On the Complexity of Assembly
Partitioning. Information Processing Letters, Vol. 48, 1993

[15] L. S. Homen de Mello and S. Lee: Computer-Aided Mechanical Assembly
Planning. Kluwer Academic Publisher, 1991

[16] T. Lozano-Pérez: Spatial Planning: A Configuration Space Approach.
IEEE Transactions On Computers, Vol. C-32, No. 2, 1983.

[17] U. Thomas, M. Barrenscheen, F. M. Wahl: Efficient Calculation of Mat-
ing Directions Based on Configuration Spaces. To be published else-
where.

[18] T. Hasegawa, T. Suehiro, K. Takase: A Model-Based Manipulation Sys-
tem with Skill-Based Execution. IEEE Transactions on Robotics and
Automation, Vol. 8, No. 5, 1992

[19] B. Finkemeyer, T. Kröger, F. M. Wahl: Accurate Placing of Polyhedral
Objects in Unknown Environments. To be published elsewhere.

	Institute for Robotics and Process Control
	Introduction
	Modern Explicit Programming Concepts
	CAD Based Program Specification
	Towards Automated Robot Programming
	Skill Primitives – Interface Between Programming
	and Control
	An Example of a Force Controlled Robot Task
	Conclusion

	References

