Pipelining

3.1 INTRODUCTION

Pipelining is one way of improving the overall processing performance of a processor. This architectural approach allows the simultaneous execution of several instructions. Pipelining is transparent to the programmer; it exploits parallelism at the instruction level by overlapping the execution process of instructions. It is analogous to an assembly line where workers perform a specific task and pass the partially completed product to the next worker.

This chapter explains various types of pipeline design. It describes different ways to measure their performance. Instruction pipelining and arithmetic pipelining, along with methods for maximizing the throughput of a pipeline, are discussed. The concepts of reservation table and latency are discussed, together with a method of controlling the scheduling of static and dynamic pipelines.

3.1.1 Pipeline Structure

The pipeline design technique decomposes a sequential process into several subprocesses, called stages or segments. A stage performs a particular function and produces an intermediate result. It consists of an input latch, also called a register or buffer, followed by a processing circuit. (A processing circuit can be a combinational or sequential circuit.) The processing circuit of a given stage is connected to the input latch of the next stage (see Figure 3.1). A clock signal is connected to each input latch. At each clock pulse, every stage transfers its intermediate result to the input latch of the next stage. In this way, the final result is produced after the input data have passed through the entire pipeline, completing one stage per clock pulse. The period of the clock pulse should be large enough to provide sufficient time for a signal to traverse through the slowest stage, which is called the bottleneck (i.e., the stage needing the longest amount of time to complete). In addition, there should be enough time for a latch to store its input signals. If the clock's period, \(P \), is expressed as \(P = t_b + t_l \), then \(t_b \) should be greater than the maximum delay of the bottleneck stage, and \(t_l \) should be sufficient for storing data into a latch.

![Figure 3.1 Basic structure of a pipeline.](image)

3.1.2 Pipeline Performance Measures

The ability to overlap stages of a sequential process for different input tasks (data or operations) results in
an overall theoretical completion time of

\[T_{\text{pipe}} = m \cdot P + (n-1) \cdot P. \] \hspace{1cm} (3.1)

where \(n \) is the number of input tasks, \(m \) is the number of stages in the pipeline, and \(P \) is the clock period. The term \(m \cdot P \) is the time required for the first input task to get through the pipeline, and the term \((n-1) \cdot P \) is the time required for the remaining tasks. After the pipeline has been filled, it generates an output on each clock cycle. In other words, after the pipeline is loaded, it will generate output only as fast as its slowest stage. Even with this limitation, the pipeline will greatly outperform nonpipelined techniques, which require each task to complete before another task’s execution sequence begins. To be more specific, when \(n \) is large, a pipelined processor can produce output approximately \(m \) times faster than a nonpipelined processor. On the other hand, in a nonpipelined processor, the above sequential process requires a completion time of

\[T_{\text{seq}} = \sum_{i=1}^{m} \tau_i \]

where \(\tau_i \) is the delay of each stage. For the ideal case when all stages have equal delay \(\tau_i = \tau \) for \(i = 1 \) to \(m \), \(T_{\text{seq}} \) can be rewritten as

\[T_{\text{seq}} = n \cdot m \cdot \tau. \]

If we ignore the small storing time \(t_i \) that is required for latch storage (i.e., \(t_i = 0 \)), then

\[T_{\text{seq}} = n \cdot m \cdot P. \] \hspace{1cm} (3.2)

Now, speedup \((S) \) may be represented as:

\[S = \frac{T_{\text{seq}}}{T_{\text{pipe}}} = \frac{n \cdot m}{(m+n-1)}. \]

The value \(S \) approaches \(m \) when \(n \to \infty \). That is, the maximum speedup, also called ideal speedup, of a pipeline processor with \(m \) stages over an equivalent nonpipelined processor is \(m \). In other words, the ideal speedup is equal to the number of pipeline stages. That is, when \(n \) is very large, a pipelined processor can produce output approximately \(m \) times faster than a nonpipelined processor. When \(n \) is small, the speedup decreases; in fact, for \(n=1 \) the pipeline has the minimum speedup of 1.

In addition to speedup, two other factors are often used for determining the performance of a pipeline; they are efficiency and throughput. The efficiency \(E \) of a pipeline with \(m \) stages is defined as:

\[E = \frac{S}{m} = \frac{[n \cdot m / (m+n-1)]}{m} = \frac{n}{(m+n-1)}. \]

The efficiency \(E \), which represents the speedup per stage, approaches its maximum value of 1 when \(n \to \infty \). When \(n=1 \), \(E \) will have the value \(1/m \), which is the lowest obtainable value.

The throughput \(H \), also called bandwidth, of a pipeline is defined as the number of input tasks it can process per unit of time. When the pipeline has \(m \) stages, \(H \) is defined as

\[H = \frac{n}{T_{\text{pipe}}} = \frac{n}{[m \cdot P + (n-1) \cdot P]} = \frac{E}{P} = \frac{S}{mP}. \]

When \(n \to \infty \), the throughput \(H \) approaches the maximum value of one task per clock cycle.

The number of stages in a pipeline often depends on the tradeoff between performance and cost. The optimal choice for such a number can be determined by obtaining the peak value of a performance/cost ratio (PCR). Larson [LAR 73, HWA 93] has defined PCR as follows:

\[\text{PCR} = \frac{\text{maximum throughput}}{\text{pipeline cost}} \]

To illustrate, assume that a nonpipelined processor requires a completion time of \(t_{\text{seq}} \) for processing an input
task. For a pipeline with \(m \) stages to process the same task, a clock period of \(P = (t_{seq}/m) + t_l \) is needed. (The time \(t_l \) is the latch delay.) Thus the maximum throughput that can be obtained with such a pipeline is

\[
1/P = 1/[(t_{seq}/m) + t_l].
\]

The maximum throughput \(1/P \) is also called the pipeline frequency. The actual throughput may be less than \(1/P \) depending on the rate of consecutive tasks entering the pipeline.

The pipeline cost \(c_p \) can be expressed as the total cost of logic gates and latches used in all stages. That is, \(c_p = c_g + mc_l \) where \(c_g \) is the cost of all logic stages and \(c_l \) is the cost of each latch. (Note that the cost of gates and latches may be interpreted in different ways; for example, the cost may refer to the actual dollar cost, design complexity, or the area required on the chip or circuit board.) By substituting the values for maximum throughput and pipeline cost in the PCR equation, the following formula can be obtained:

\[
PCR = 1/\left\{\left[(t_{seq}/m) + t_l\right](c_g + mc_l)\right\}.
\]

This equation has a maximum value \(m_0 \), where

\[
m_0 = \frac{(t_{seq} * c_g)}{(t_l * c_l)}.
\]

Since the value \(m_0 \) maximizes PCR, this value can be used as an optimal choice for the number of stages.

3.1.3 Pipeline types

Pipelines are usually divided into two classes: instruction pipelines and arithmetic pipelines. A pipeline in each of these classes can be designed in two ways: static or dynamic. A static pipeline can perform only one operation (such as addition or multiplication) at a time. The operation of a static pipeline can only be changed after the pipeline has been drained. (A pipeline is said to be drained when the last input data leave the pipeline.) For example, consider a static pipeline that is able to perform addition and multiplication. Each time that the pipeline switches from a multiplication operation to an addition operation, it must be drained and set for the new operation. The performance of static pipelines is severely degraded when the operations change often, since this requires the pipeline to be drained and refilled each time. A dynamic pipeline can perform more than one operation at a time. To perform a particular operation on an input data, the data must go through a certain sequence of stages. For example, Figure 3.2 shows a three-stage dynamic pipeline that performs addition and multiplication on different data at the same time. To perform multiplication, the input data must go through stages 1, 2, and 3; to perform addition, the data only need to go through stages 1 and 3. Therefore, the first stage of the addition process can be performed on an input data \(D_1 \) at stage 1, while at the same time the last stage of the multiplication process is performed at stage 3 on a different input data \(D_2 \). Note that the time interval between the initiation of the inputs \(D_1 \) and \(D_2 \) to the pipeline should be such that they do not reach stage 3 at the same time; otherwise, there is a collision. In general, in dynamic pipelines the mechanism that controls when data should be fed to the pipeline is much more complex than in static pipelines.
3.2 INSTRUCTION PIPELINE

In a von Neumann architecture, the process of executing an instruction involves several steps. First, the control unit of a processor fetches the instruction from the cache (or from memory). Then the control unit decodes the instruction to determine the type of operation to be performed. When the operation requires operands, the control unit also determines the address of each operand and fetches them from cache (or memory). Next, the operation is performed on the operands and, finally, the result is stored in the specified location.

An instruction pipeline increases the performance of a processor by overlapping the processing of several different instructions. Often, this is done by dividing the instruction execution process into several stages. As shown in Figure 3.3, an instruction pipeline often consists of five stages, as follows:

1. **Instruction fetch (IF)**. Retrieval of instructions from cache (or main memory).
2. **Instruction decoding (ID)**. Identification of the operation to be performed.
3. **Operand fetch (OF)**. Decoding and retrieval of any required operands.
4. **Execution (EX)**. Performing the operation on the operands.
5. **Write-back (WB)**. Updating the destination operands.
An instruction pipeline overlaps the process of the preceding stages for different instructions to achieve a much lower total completion time, on average, for a series of instructions. As an example, consider Figure 3.4, which shows the execution of four instructions in an instruction pipeline. During the first cycle, or clock pulse, instruction i_1 is fetched from memory. Within the second cycle, instruction i_1 is decoded while instruction i_2 is fetched. This process continues until all the instructions are executed. The last instruction finishes the write-back stage after the eighth clock cycle. Therefore, it takes 80 nanoseconds (ns) to complete execution of all the four instructions when assuming the clock period to be 10 ns. The total completion time can also be obtained using equation (3.1); that is,

$$T_{pipe} = m \cdot P + (n-1) \cdot P$$

$$= 5 \cdot 10 + (4-1) \cdot 10 = 80 \text{ ns}.$$

Note that in a nonpipelined design the completion time will be much higher. Using equation (3.2),

$$T_{seq} = n \cdot m \cdot P = 4 \cdot 5 \cdot 10 = 200 \text{ ns}.$$

It is worth noting that a similar execution path will occur for an instruction whether a pipelined architecture
is used or not; a pipeline simply takes advantage of these naturally occurring stages to improve processing efficiency. Henry Ford made the same connection when he realized that all cars were built in stages and invented the assembly line in the early 1900s. Some ideas have an enduring quality and can be applied in many different ways!

Even though pipelining speeds up the execution of instructions, it does pose potential problems. Some of these problems and possible solutions are discussed next.

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>i_1</td>
<td>IF</td>
</tr>
<tr>
<td>i_2</td>
<td>IF</td>
</tr>
<tr>
<td>i_3</td>
<td>IF</td>
</tr>
<tr>
<td>i_4</td>
<td>IF</td>
</tr>
</tbody>
</table>

Figure 3.4 Execution cycles of four consecutive instructions in an instruction pipeline.

3.2.1 Improving the Throughput of an Instruction Pipeline

Three sources of architectural problems may affect the throughput of an instruction pipeline. They are fetching, bottleneck, and issuing problems. Some solutions are given for each.

The fetching problem. In general, supplying instructions rapidly through a pipeline is costly in terms of chip area. Buffering the data to be sent to the pipeline is one simple way of improving the overall utilization of a pipeline. The utilization of a pipeline is defined as the percentage of time that the stages of the pipeline are used over a sufficiently long period of time. A pipeline is utilized 100% of the time when every stage is used (utilized) during each clock cycle.

Occasionally, the pipeline has to be drained and refilled, for example, whenever an interrupt or a branch occurs. The time spent refilling the pipeline can be minimized by having instructions and data loaded ahead of time into various geographically close buffers (like on-chip caches) for immediate transfer into the pipeline. If instructions and data for normal execution can be fetched before they are needed and stored in buffers, the pipeline will have a continuous source of information with which to work. Prefetch algorithms are used to make sure potentially needed instructions are available most of the time. Delays from memory-access conflicts can thereby be reduced if these algorithms are used, since the time required to transfer data from main memory is far greater than the time required to transfer data from a buffer.

The bottleneck problem. The bottleneck problem relates to the amount of load (work) assigned to a stage in the pipeline. If too much work is applied to one stage, the time taken to complete an operation at that stage can become unacceptably long. This relatively long time spent by the instruction at one stage will inevitably create a bottleneck in the pipeline system. In such a system, it is better to remove the bottleneck that is the source of congestion. One solution to this problem is to further subdivide the stage. Another solution is to build multiple copies of this stage into the pipeline.

The issuing problem. If an instruction is available, but cannot be executed for some reason, a hazard exists for that instruction. These hazards create issuing problems; they prevent issuing an instruction for execution. Three types of hazard are discussed here. They are called structural hazard, data hazard, and control hazard. A structural hazard refers to a situation in which a required resource is not available (or is busy) for executing an instruction. A data hazard refers to a situation in which there exists a data dependency (operand conflict) with a prior instruction. A control hazard refers to a situation in which an instruction, such as branch, causes a change in the program flow. Each of these hazards is explained next.

Structural Hazard. A structural hazard occurs as a result of resource conflicts between instructions. One
type of structural hazard that may occur is due to the design of execution units. If an execution unit that
requires more than one clock cycle (such as multiply) is not fully pipelined or is not replicated, then a
sequence of instructions that uses the unit cannot be subsequently (one per clock cycle) issued for
execution. Replicating and/or pipelining execution units increases the number of instructions that can be
issued simultaneously. Another type of structural hazard that may occur is due to the design of register
files. If a register file does not have multiple write (read) ports, multiple writes (reads) to (from) registers
cannot be performed simultaneously. For example, under certain situations the instruction pipeline might
want to perform two register writes in a clock cycle. This may not be possible when the register file has
only one write port.

The effect of a structural hazard can be reduced fairly simply by implementing multiple execution units and
using register files with multiple input/output ports.

Data Hazard. In a nonpipelined processor, the instructions are executed one by one, and the execution of
an instruction is completed before the next instruction is started. In this way, the instructions are executed
in the same order as the program. However, this may not be true in a pipelined processor, where instruction
executions are overlapped. An instruction may be started and completed before the previous instruction is
completed. The data hazard, which is also referred to as the data dependency problem, comes about as a
result of overlapping (or changing the order of) the execution of data-dependent instructions. For example,
in Figure 3.5 instruction i_2 has a data dependency on i_1 because it uses the result of i_1 (i.e., the contents
of register R_2) as input data. If the instructions were sent to a pipeline in the normal manner, i_2 would be in the
OF stage before i_1 passed through the WB stage. This would result in using the old contents of
R_2 for computing a new value for R_5, leading to an invalid result. To have a valid result, i_2 must not enter the OF
stage until i_1 has passed through the WB stage. In this way, as is shown in Figure 3.6, the execution of i_2
will be delayed for two clock cycles. In other words, instruction i_2 is said to be *stalled* for two clock cycles.
Often, when an instruction is stalled, the instructions that are positioned after the stalled instruction will
also be stalled. However, the instructions before the stalled instruction can continue execution.

\[
\begin{align*}
 i_1 & \quad \text{Add R}_2, \quad R_3, \quad R_4 \quad \quad \text{-- R}_2=R_3+R_4 \\
 i_2 & \quad \text{Add R}_5, \quad R_2, \quad R_1 \quad \quad \text{-- R}_5=R_2+R_1
\end{align*}
\]

![Figure 3.5 Instruction i_2 has data dependency on i_1.](image)

\[
\begin{array}{cccccc}
 \text{Cycles} & 1 & 2 & 3 & 4 & 5 & 6 \\
 i_1 & IF & ID & OF & EX & WB \\
 i_2 & IF & ID & OF & EX & WB \\
\end{array}
\]

![Figure 3.6 Two ways of executing data dependent instructions.](image)
The delaying of execution can be accomplished in two ways. One way is to delay the OF or IF stages of \(i_2 \) for two clock cycles. To insert a delay, an extra hardware component called a pipeline interlock can be added to the pipeline. A pipeline interlock detects the dependency and delays the dependent instructions until the conflict is resolved. Another way is to let the compiler solve the dependency problem. During compilation, the compiler detects the dependency between data and instructions. It then rearranges these instructions so that the dependency is not hazardous to the system. If it is not possible to rearrange the instructions, NOP (no operation) instructions are inserted to create delays. For example, consider the four instructions in Figure 3.7. These instructions may be reordered so that \(i_3 \) and \(i_4 \), which are not dependent on \(i_1 \) and \(i_2 \), are inserted between \(i_1 \) and \(i_2 \).

\[
\begin{align*}
 i_1 & : \text{Add } R_2, R_3, R_4, \quad \text{-- } R_2 = R_3 + R_4 \\
 i_2 & : \text{Add } R_5, R_2, R_1, \quad \text{-- } R_5 = R_2 + R_1 \\
 i_3 & : \text{Add } R_6, R_6, R_7, \quad \text{-- } R_6 = R_6 + R_7 \\
 i_4 & : \text{Add } R_8, R_8, R_7, \quad \text{-- } R_8 = R_8 + R_7
\end{align*}
\]

<table>
<thead>
<tr>
<th>Cycles</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i_1)</td>
<td>IF</td>
<td>ID</td>
<td>OF</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_2)</td>
<td>IF</td>
<td>ID</td>
<td>OF</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_3)</td>
<td>IF</td>
<td>ID</td>
<td>OF</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_4)</td>
<td>IF</td>
<td>ID</td>
<td>OF</td>
<td>EX</td>
<td>WB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.7 Rearranging the order of instruction execution.

In the previous type of data hazard, an instruction uses the result of a previous instruction as input data. In addition to this type of data hazard, other types may occur in designs that allow concurrent execution of instructions. Note that the type of pipeline design considered so far preserves the execution order of instructions in the program. Later in this section we will consider architectures that allow concurrent execution of independent instructions.

There are three primary types of data hazards: RAW (read after write), WAR (write after read), and WAW (write after write). The hazard names denote the execution ordering of the instructions that must be maintained to produce a valid result; otherwise, an invalid result might occur. Each of these hazards is explained in the following discussion. In each explanation, it is assumed that there are two instructions \(i_1 \) and \(i_2 \), and \(i_2 \) should be executed after \(i_1 \).

RAW: This type of data hazard was discussed previously; it refers to the situation in which \(i_2 \) reads a data source before \(i_1 \) writes to it. This may produce an invalid result since the read must be performed after the write in order to obtain a valid result. For example, in the sequence

\[
\begin{align*}
 i_1 & : \text{Add } R_2, R_3, R_4, \quad \text{-- } R_2 = R_3 + R_4 \\
 i_2 & : \text{Add } R_5, R_2, R_1, \quad \text{-- } R_5 = R_2 + R_1
\end{align*}
\]

an invalid result may be produced if \(i_2 \) reads \(R_2 \) before \(i_1 \) writes to it.

WAR: This refers to the situation in which \(i_2 \) writes to a location before \(i_1 \) reads it. For example, in the sequence

\[
\begin{align*}
 i_1 & : \text{Add } R_2, R_3, R_4, \quad \text{-- } R_2 = R_3 + R_4 \\
 i_2 & : \text{Add } R_4, R_5, R_6, \quad \text{-- } R_4 = R_5 + R_6
\end{align*}
\]

an invalid result may be produced if \(i_2 \) writes to \(R_4 \) before \(i_1 \) reads it; that is, the instruction \(i_1 \) might use the wrong value of \(R_4 \).
WAW: This refers to the situation in which \(i_2 \) writes to a location before \(i_1 \) writes to it. For example, in the sequence

\[
\begin{align*}
i_1: & \quad \text{Add} \quad R_2, \quad R_3, \quad R_4 \quad \rightarrow R_2 = R_3 + R_4 \\
i_2: & \quad \text{Add} \quad R_2, \quad R_5, \quad R_6 \quad \rightarrow R_2 = R_5 + R_6
\end{align*}
\]

the value of \(R_2 \) is recomputed by \(i_2 \). If the order of execution were reversed, that is, \(i_2 \) writes to \(R_2 \) before \(i_1 \) writes to it, an invalid value for \(R_2 \) might be produced.

Note that the WAR and WAW types of hazards cannot happen when the order of completion of instructions execution in the program is preserved. However, one way to enhance the architecture of an instruction pipeline is to increase concurrent execution of the instructions by dispatching several independent instructions to different functional units, such as adders/subtractors, multipliers, and dividers. That is, the instructions can be executed out of order, and so their execution may be completed out of order too. Hence, in such architectures all types of data hazards are possible.

In today's architectures, the dependencies between instructions are checked statically by the compiler and/or dynamically by the hardware at run time. This preserves the execution order for dependent instructions, which ensures valid results. Many different static dependency checking techniques have been developed to exploit parallelism in a loop [LIL 94, WOL 91]. These techniques have the advantage of being able to look ahead at the entire program and are able to detect most dependencies.

Unfortunately, certain dependencies cannot be detected at compile time. For example, it is not always possible to determine the actual memory addresses of load and store instructions in order to resolve a possible dependency between them. However, during the run time the actual memory addresses are known, and thereby dependencies between instructions can be determined by dynamically checking the dependency. In general, dynamic dependency checking has the advantage of being able to determine dependencies that are either impossible or hard to detect at compile time. However, it may not be able to exploit all the parallelism available in a loop because of the limited lookahead ability that can be supported by the hardware. In practice, a combined static-dynamic dependency checking is often used to take advantage of both approaches.

Here we will discuss the techniques for dynamic dependency checking. Two of the most commonly used techniques are called Tomasulo's method [TOM 67] and the scoreboard method [THO 64, THO 70]. The basic concept behind these methods is to use a mechanism for identifying the availability of operands and functional units in successive computations.

Tomasulo's Method. Tomasulo's method was developed by R. Tomasulo to overcome the long memory access delays in the IBM 360/91 processor. Tomasulo's method increases concurrent execution of the instructions with minimal (or no) effort by the compiler or the programmer. In this method, a busy bit and a tag register are associated with registers. The busy bit of a particular register is set when an issued instruction designates that register as a destination. (The destination register, or sink register, is the register that the result of the instruction will be written to.) The busy bit is cleared when the result of the execution is written back to the register. The tag of a register identifies the unit whose result will be sent to the register (this will be made clear shortly).

Each functional unit may have more than one set (source_1 and source_2) of input registers. Each such set is called a reservation station and is used to keep the operands of an issued instruction. A tag register is also associated with each register of a reservation station. In addition, a common data bus (CDB) connects the output of the functional units to their inputs and the registers. Such a common data bus structure, called a forwarding technique (also referred to as feed-forwarding), plays a very important role in organizing the order in which various instructions are presented to the pipeline for execution. The CDB makes it possible for the result of an operation to become available to all functional units without first going through a register. It allows a direct copy of the result of an operation to be given to all the functional units waiting for that result. In other words, a currently executing instruction can have access to the result of a previous
instruction before the result of the previous instruction has actually been written to an output register.

Figure 3.8 represents a simple architecture for such a method. In this architecture there are nine units communicating through a common data bus. The units include five registers, two add reservation stations called \(A_1 \) and \(A_2 \) (virtually two adders), and two multiply reservation stations called \(M_1 \) and \(M_2 \) (virtually two multipliers). The binary-coded tags 1 to 5 are associated with registers in the register file, 6 and 7 are associated to add stations, and 8 and 9 are associated with multiply stations. The tags are used to direct the result of an instruction to the next instruction through the CDB. For example, consider the execution of the following two instructions.

\[
\begin{align*}
 i_1 & : \text{Add } R_2, R_3, R_4 \quad \text{-- } R_2 = R_3 + R_4 \\
 i_2 & : \text{Add } R_2, R_2, R_1 \quad \text{-- } R_2 = R_2 + R_1
\end{align*}
\]

After issuing the instruction \(i_1 \) to the add station \(A_1 \), the busy bit of the register \(R_2 \) is set to 1, the contents of the registers \(R_3 \) and \(R_4 \) are sent to source_1 and source_2 of the add station \(A_1 \), respectively, and the tag of \(R_2 \) is set to 6 (i.e., 110), which is the tag of \(A_1 \). Then the adder unit starts execution of \(i_1 \). In the meantime, during the process of operand fetch for the instruction \(i_2 \), it becomes known that the register \(R_2 \) is busy. This means that instruction \(i_2 \) depends on the result of instruction \(i_1 \). To let the execution of \(i_2 \) start as soon as possible, the contents of tag of \(R_2 \) (i.e., 110) are sent to the tag of the source_1 of the add station \(A_2 \); therefore, tag of source_1 of \(A_2 \) is set to 6. At this time the tag of \(R_2 \) is changed to 7, which means that the result of \(A_2 \) must be transferred to \(R_2 \). Also, the contents of \(R_1 \) are sent to source_2 of \(A_2 \). Right before the adder finishes the execution of \(i_1 \) and produces the result, it sends a request signal to the CDB for sending the result. (Since CDB is shared with many units, its time sharing can be controlled by a central priority circuit.) When the CDB acknowledges the request, the adder \(A_1 \) sends the result to the CDB. The CDB broadcasts the result together with the tag of \(A_1 \) (i.e., 6) to all the units. Each reservation station, while waiting for data, compares its source register tags with the tag on the CDB. If they match, the data are copied to the proper register(s). Similarly, at the same time, each register whose busy bit is set to 1 compares its tag with the tag on the CDB. If they match, the register updates its data and clears the busy bit. In this case the data are copied to source_1 of \(A_2 \). Next, \(A_2 \) starts execution and the result is sent to \(R_2 \).

As demonstrated in the preceding example, the main concepts in Tomasulo's method are the addition of reservation stations, the innovation of the CDB, and the development of a simple tagging scheme. The reservation stations do the waiting for operands and hence free up the functional units from such a task. The
CDB utilizes the reservation stations by providing them the result of an operation directly from the output of the functional unit. The tagging scheme preserves dependencies between successive operations while encouraging concurrency.

Although the extra hardware suggested by the Tomasulo's method encourages concurrent execution of instructions, the programmer and/or compiler still has substantial influence on the degree of concurrency. The following two programs for computing $(A \times B) + (C + D)$ illustrate this.

Load R_1, A
Load R_2, B
Load R_3, C
Load R_4, D
Mul R_5, R_1, R_2 -- $R_5 = R_1 \times R_2$
Add R_4, R_3, R_4 -- $R_4 = R_3 + R_4$

An alternative to this program that allows more concurrency is:

Load R_1, A
Load R_2, B
Load R_3, C
Load R_4, D
Mul R_5, R_1, R_2 -- $R_5 = R_1 \times R_2$
Add R_4, R_3, R_4 -- $R_4 = R_3 + R_4$
Add R_4, R_4, R_5 -- $R_4 = R_4 + R_5$

In the second set of instructions, the multiply instruction and the first add instruction can be executed simultaneously, an impossibility in the first set of instructions. Often, in practice, a combination of hardware and software techniques is used to increase concurrency.

Scoreboard Method. The scoreboard method was first used in the high-performance CDC 6600 computer, in which multiple functional units allow instructions to be completed out of the original program order. This scheme maintains information about the status of each issued instruction, each register, and each functional unit in some buffers (or hardware mechanism) known as the scoreboard. When a new instruction is issued for execution, its influence on the registers and the functional units is added to the scoreboard. By considering a snapshot of the scoreboard, it can be determined if waiting is required for the new instruction. If no waiting is required, the proper functional unit immediately starts the execution of the instruction. If waiting is required (for example, one of the input operands is not yet available), execution of the new instruction is delayed until the waiting conditions are removed.

As described in [HEN 90], a scoreboard may consist of three tables: instruction status, functional unit status, and destination register status. Figure 3.9 represents a snapshot of the contents of these tables for the following program:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Register(s)</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load R_1</td>
<td>R_1, R_2, R_3, R_4</td>
<td>Add</td>
<td>$R_5 = R_1 + R_2 + R_3 + R_4$</td>
</tr>
</tbody>
</table>

The instruction status table indicates whether or not an instruction is issued for execution. If the instruction is issued, the table shows which stage the instruction is in. After an instruction is brought in and decoded, the scoreboard will attempt to issue an instruction to the proper functional unit. An instruction will be issued if the functional unit is free and there is no other active instruction using the same destination.
register; otherwise, the issuing is delayed. In other words, an instruction is issued when WAW hazards and structural hazards do not exist. When such hazards exist, the issuing of the instruction and the instructions following are delayed until the hazards are removed. In this way the instructions are issued in order, while independent instructions are allowed to be executed out of order.

The functional unit status table indicates whether or not a functional unit is busy. A busy unit means that the execution of an issued instruction to that unit is not completed yet. For a busy unit, the table also identifies the destination register and the availability of the source registers. A source register for a unit is available if it does not appear as a destination for any other unit.

The destination register status table indicates the destination registers that have not yet been written to. For each such register the active functional unit that will write to the register is identified. The table has an entry for each register.

During the operand fetch stage, the scoreboard monitors the tables to determine whether or not the source registers are available to be read by an active functional unit. If none of the source registers is used as the destination register of other active functional units, the unit reads the operands from these registers and begins execution. After the execution is completed (i.e., at the end of execution stage), the scoreboard checks for WAR hazards before allowing the result to be written to the destination register. When no WAR hazard exists, the scoreboard tells the functional unit to go ahead and write the result to the destination register.

In Figure 3.9, the tables indicate that the first three load instructions have completed the execution and their operands are written to the destination registers. The last load instruction has been issued to the load/store unit (unit 1). This instruction has completed the fetch but has not yet written its operand to the register \(R_4 \). The multiplier unit is executing the instruction mul, and the first add instruction is issued to Adder_1 unit. The Adder_1 is waiting for \(R_4 \) to be written by load/store before it begins execution. This is because there is a RAW hazard between the last load and first add instructions. Note that at this time the second add cannot be issued because it uses \(R_2 \) as the source and destination register \(R_2 \), at this time, is busy with the first add. When \(R_4 \) is written by the load/store unit, Adder_1 begins execution.

At a later time, the scoreboard changes. As shown in Figure 3.10, if Adder_1 completes execution before the multiplier, it will write its result to \(R_2 \), and the second add instruction will be issued to the Adder_2 unit. Note that if the multiplier unit has not read \(R_2 \) before Adder_1 completes execution, Adder_1 will be prevented from writing the result to \(R_2 \) until the multiplier reads its operands; this is because there is a WAR hazard between mul and the first add instructions.
Figure 3.9 A snapshot of the scoreboard after issuing the first add instruction.
The main component of the scoreboard approach is the destination register status table. This table is used to solve data hazards between instructions. Each time an instruction is issued for execution, the instruction's destination register is marked busy. The destination register stays busy until the instruction completes execution. When a new instruction is considered for execution, its operands are checked to ensure that there are no register conflicts with prior instructions still in execution.

Control Hazard. In any set of instructions, there is normally a need for some kind of statement that allows the flow of control to be something other than sequential. Instructions that do this are included in every programming language and are called branches. In general, about 30% of all instructions in a program are branches. This means that branch instructions in the pipeline can reduce the throughput tremendously if not handled properly. Whenever a branch is taken, the performance of the pipeline is seriously affected. Each such branch requires a new address to be loaded into the program counter, which may invalidate all the instructions that are either already in the pipeline or prefetched in the buffer. This draining and refilling of the pipeline for each branch degrade the throughput of the pipeline to that of a sequential processor. Note that the presence of a branch statement does not automatically cause the pipeline to drain and begin refilling. A branch not taken allows the continued sequential flow of uninterrupted instructions to the pipeline. Only when a branch is taken does the problem arise.
In general, branch instructions can be classified into three groups: (1) unconditional branch, (2) conditional branch, and (3) loop branch [LIL 88]. An unconditional branch always alters the sequential program flow. It sets a new target address in the program counter, rather than incrementing it by 1 to point to the next sequential instruction address, as is normally the case. A conditional branch sets a new target address in the program counter only when a certain condition, usually based on a condition code, is satisfied. Otherwise, the program counter is incremented by 1 as usual. In other words, a conditional branch selects a path of instructions based on a certain condition. If the condition is satisfied, the path starts from the target address and is called a target path. If it is not, the path starts from the next sequential instruction and is called a sequential path. Finally, a loop branch in a loop statement usually jumps back to the beginning of the loop and executes it either a fixed or a variable (data-dependent) number of times.

Among the preceding branch types, conditional branches are the hardest to handle. As an example, consider the following conditional branch instruction sequence:

\[
\begin{align*}
i_1 \\
i_2 \text{ (conditional branch to } i_k) \\
i_3 \\
\vdots \\
i_k \text{ (target) } \\
i_{k+1}
\end{align*}
\]

Figure 3.11 shows the execution of this sequence in our instruction pipeline when the target path is selected. In this figure, \(c\) denotes the branch penalty, that is, the number of cycles wasted whenever the target path is chosen.

To show the effect of the branch penalty on the overall pipeline performance, the average number of cycles per instruction must be determined. Let \(t_{ave}\) denote the average number of cycles required for execution of an instruction; then

\[
t_{ave} = P_b \times (\text{average number of cycles per branch instruction}) + \(1 - P_b\) \times (\text{average number of cycles per nonbranch instruction}), \tag{3.3}
\]

where \(P_b\) denotes the probability that a given instruction is a branch.

The average number of cycles per branch instruction can be determined by considering two cases. If the target path is chosen, \(1 + c\) cycles \((c = \text{branch penalty})\) are needed for the execution; otherwise, there is no branch penalty and only one cycle is needed.

Thus average number of cycles per branch instruction \(= P_b (1 + c) + (1 - P_b)(1)\), where \(P_b\) denotes the
probability that the t target path is chosen. The average number of cycles per nonbranch instruction is 1. After the pipeline becomes filled with instructions, a nonbranch instruction completes every cycle. Thus

$$t_{ave} = P_b \left[P_t (1+c) + (1-P_t)(1) \right] + (1 - P_b)(1) = 1 + c P_b P_t$$

After analyzing many practical programs, Lee and Smith [LEE 84] have shown the average P_b to be approximately 0.1 to 0.3 and the average P_t to be approximately 0.6 to 0.7. Assuming that $P_b=0.2$, $P_t=0.65$, and $c=3$, then

$$t_{ave} = 1 + 3 (0.2)(0.65) = 1.39.$$

In other words, the pipeline operates at 72% ($100/1.39 = 72$) of its maximum rate when branch instructions are considered.

Sometimes, the performance of a pipeline is represented in terms of throughput. The throughput, H, of a pipeline can also be expressed as the average number of instructions executed per clock cycle. Thus

$$H = 1/t_{ave} = 1/(1+cP_bP_t).$$

To reduce the effect of branching on processor performance, several techniques have been proposed [LIL 88]. Some of the better known techniques are branch prediction, delayed branching, and multiple prefetching. Each of these techniques is explained next.

Branch Prediction. In this type of design, the outcome of a branch decision is predicted before the branch is actually executed. Therefore, based on a particular prediction, the sequential path or the target path is chosen for execution. Although the chosen path often reduces the branch penalty, it may increase the penalty in case of incorrect prediction.

There are two types of predictions, static and dynamic. In static prediction, a fixed decision for prefetching one of the two paths is made before the program runs. For example, a simple technique would be to always assume that the branch is taken. This technique simply loads the program counter with the target address when a branch is encountered. Another such technique is to automatically choose one path (sequential or target) for some branch types and another for the rest of the branch types. If the chosen path is wrong, the pipeline is drained and instructions corresponding to the correct path are fetched; the penalty is paid.

In dynamic prediction, during the execution of the program the processor makes a decision based on the past information of the previously executed branches. For example, a simple technique would be to record the history of the last two paths taken by each branch instruction. If the last two executions of a branch instruction have chosen the same path, that path will be chosen for the current execution of the branch instruction. If the two paths do not match, one of the paths will be chosen randomly.

A better approach is to associate an n-bit counter with each branch instruction. This is known as the counter-based branch prediction approach [PAN 92, HWU 89, LEE 84]. In this method, after executing a branch instruction for the first time, its counter, C, is set to a threshold, T, if the target path was taken, or to $T-1$ if the sequential path was taken. From then on, whenever the branch instruction is about to be executed, if $C \geq T$, then the target path is taken; otherwise, the sequential path is taken. The counter value C is updated after the branch is resolved. If the correct path is the target path, the counter is incremented by 1; if not, C is decremented by 1. If C ever reaches 2^n-1 (an upper bound), C is no longer incremented, even if the target path was correctly predicted and chosen. Likewise, C is never decremented to a value less than 0.

In practice, often n and T are chosen to be 2. Studies have shown that 2-bit predictors perform almost as well as predictors with more number of bits. The following diagram represents the possible states in a 2-bit predictor.
An alternative scheme to the preceding 2-bit predictor is to change the prediction only when the predicted path has been wrong for two consecutive times. The following diagram shows the possible states for such a scheme.

Most processors employ a small size cache memory called branch target buffer (BTB); sometimes referred to as target instruction cache (TIC). Often, each entry of this cache keeps a branch instruction’s address with its target address and the history used by the prediction scheme. When a branch instruction is first executed, the processor allocates an entry in the BTB for this instruction. When a branch instruction is fetched, the processor searches the BTB to determine whether it holds an entry for the corresponding branch instruction. If there is a hit, the recorded history is used to determine whether the sequential or target path should be taken.

Static prediction methods usually require little hardware, but they may increase the complexity of the compiler. In contrast, dynamic prediction methods increase the hardware complexity, but they require less work at compile time. In general, dynamic prediction obtains better results than static prediction and also provides a greater degree of object code compatibility, since decisions are made after compile time.

To find the performance effect of branch prediction, we need to reevaluate the average number of cycles per branch instruction in equation (3.3). There are two possible cases: the predicted path is either correct or incorrect. In the case of a correctly predicted path, the penalty is \(d \) when the path is a target path (see Figure 3.12a), and the penalty is 0 when the path is a sequential path. (Note that, in Figure 3.12a, the address of target path is obtained after the decode stage. However, when a branch target buffer is used in the design, the target address can be obtained during or after the fetch stage.) In the case of an incorrectly predicted path for both target and sequential predicted paths, the penalty is \(c \) (See Figure 3.11 and Figure 3.12b). Putting it all together, we have
The average number of cycles per branch instruction is given by:

\[
P_r \left[P_r (1+d) + (1 - P_r)(1) \right] + (1 - P_r)(1+c) \]

where \(P_r \) is the probability of a right prediction. Substituting this term into equation (3.3),

\[
t_{ave} = P_b [P_r (P_r d + 1) + (1 - P_r)(1+c)] + (1 - P_r)(1) \\
= 1 + P_b c - P_b R_r c + P_b R_r d.
\]

Assume that \(P_b = 0.2, P_r = 0.65, c = 3, \) and \(d = 1. \) Also assume that the predicted path is correct 70% of the time (i.e., \(P_r = 0.70. \) Then

\[
t_{ave} = 1.27.
\]

That is, the pipeline operates at 78% of its maximum rate due to the branch prediction.

Delayed Branching. The delayed branching scheme eliminates or significantly reduces the effect of the branch penalty. In this type of design, a certain number of instructions after the branch instruction is fetched and executed regardless of which path will be chosen for the branch. For example, a processor with a branch delay of \(k \) executes a path containing the next \(k \) sequential instructions and then either continues on the same path or starts a new path from a new target address. As often as possible, the compiler tries to fill the next \(k \) instruction slots after the branch with instructions that are independent from the branch instruction. NOP (no operation) instructions are placed in any remaining empty slots. As an example, consider the following code:

\[
\begin{align*}
i_1: & \quad \text{Load} \quad R_1, \quad A \\
i_2: & \quad \text{Load} \quad R_2, \quad B \\
i_3: & \quad \text{BrZr} \quad R_2, \quad i_7 \quad \text{-- branch to } i_7 \text{ if } R_2=0; \\
i_4: & \quad \text{Load} \quad R_3, \quad C \\
i_5: & \quad \text{Add} \quad R_4, \quad R_2, \quad R_3 \quad \text{-- } R_4 = R_3 + R_3 \\
i_6: & \quad \text{Mul} \quad R_5, \quad R_1, \quad R_2 \quad \text{-- } R_5 = R_1 \times R_2 \\
i_7: & \quad \text{Add} \quad R_4, \quad R_1, \quad R_2 \quad \text{-- } R_4 = R_1 + R_2.
\end{align*}
\]

Assuming that \(k=2, \) the compiler modifies this code by moving the instruction \(i_3 \) and inserting an NOP instruction after the branch instruction \(i_3. \) The modified code is

\[
\begin{align*}
i_2: & \quad \text{Load} \quad R_2, \quad B \\
i_3: & \quad \text{BrZr} \quad R_2, \quad i_7
\end{align*}
\]
As can be seen in the modified code, the instruction i_1 is executed regardless of the branch outcome.

Multiple Prefetching. In this type of design, the processor fetches both possible paths. Once the branch decision is made, the unwanted path is thrown away. By prefetching both possible paths, the fetch penalty is avoided in the case of an incorrect prediction.

To fetch both paths, two buffers are employed to service the pipeline. In normal execution, the first buffer is loaded with instructions from the next sequential address of the branch instruction. If a branch occurs, the contents of the first buffer are invalidated, and the secondary buffer, which has been loaded with instructions from the target address of the branch instruction, is used as the primary buffer.

This double buffering scheme ensures a constant flow of instructions and data to the pipeline and reduces the time delays caused by the draining and refilling of the pipeline. Some amount of performance degradation is unavoidable any time the pipeline is drained, however.

In summary, each of the preceding simple techniques reduces the degradation of pipeline throughput. However, the choice of any of these techniques for a particular design depends on factors such as throughput requirements and cost constraints. In practice, due to these factors, it is not unusual to see a mixture of these techniques implemented on a single processor.

3.2.2 Further Throughput Improvement of an Instruction Pipeline

One way to increase the throughput of an instruction pipeline is to exploit instruction-level parallelism. The common approaches to accomplish such parallelism are called *superscalar* [IBM 90, OEH 91], *superpipeline* [JOU 89, BAS 91], and *very long instruction word* (VLIW) [COL 88, FIS 83]. Each approach attempts to initiate several instructions per cycle.

Superscalar. The superscalar approach relies on spatial parallelism, that is, multiple operations running concurrently on separate hardware. This approach achieves the execution of multiple instructions per clock cycle by issuing several instructions to different functional units. A superscalar processor contains one or more instruction pipelines sharing a set of functional units. It often contains functional units, such as an add unit, multiply unit, divide unit, floating-point add unit, and graphic unit. A superscalar processor contains a control mechanism to preserve the execution order of dependent instructions for ensuring a valid result. The scoreboard method and Tomasulo’s method (discussed in the previous section) can be used for implementing such mechanisms. In practice, most of the processors are based on the superscalar approach and employ a scoreboard method to ensure a valid result. Examples of such processors are given in Chapter 4.

Superpipeline. The superpipeline approach achieves high performance by overlapping the execution of multiple instructions on one instruction pipeline. A superpipeline processor often has an instruction pipeline with more stages than a typical instruction pipeline design. In other words, the execution process of an instruction is broken down into even finer steps. By increasing the number of stages in the instruction pipeline, each stage has less work to do. This allows the pipeline clock rate to increase (cycle time decreases), since the clock rate depends on the delay found in the slowest stage of the pipeline.

An example of such an architecture is the MIPS R4000 processor. The R4000 subdivides instruction fetching and data cache access to create an eight-stage pipeline. The stages are instruction fetch first half, instruction fetch second half, register fetch, instruction execute, data cache access first half, data cache access second half, tag check, and write back.
A superpipeline approach has certain benefits. The single functional unit requires less space and less logic on the chip than designs based on the superscalar approach. This extra space on the chip allows room for specialize circuitry to achieve higher speeds, room for large caches, and wide data paths.

Very Long Instruction Word (VLIW). The very long instruction word (VLIW) approach makes extensive use of the compiler by requiring it to incorporate several small independent operations into a long instruction word. The instruction is large enough to provide, in parallel, enough control bits over many functional units. In other words, a VLIW architecture provides many more functional units than a typical processor design, together with a compiler that finds parallelism across basic operations to keep the functional units as busy as possible. The compiler compacts ordinary sequential codes into long instruction words that make better use of resources. During execution, the control unit issues one long instruction per cycle. The issued instruction initiates many independent operations simultaneously.

A comparison of the three approaches will show a few interesting differences. For instance, the superscalar and VLIW approaches are more sensitive to resource conflicts than the superpipelined approach. In a superscalar or VLIW processor, a resource must be duplicated to reduce the chance of conflicts, while the superpipelined design avoids any resource conflicts.

To prevent the superpipelined processor from being slower than the superscalar, the technology used in the superpipelined must reduce the delay of the lengthy instruction pipeline. Therefore, in general, superpipelined designs require faster transistor technology such as GaAs (gallium arsinide), whereas superscalar designs require more transistors to account for the hardware resource duplication. The superscalar design often uses CMOS technology, since this technology provides good circuit density. Although superpipelining seems to be a more straightforward solution than superscaling, existing technology generally favors increasing circuit density over increasing circuit speed. Historically, circuit density has increased at a faster rate than transistor speed. This historical precedent suggests a general conclusion that the superscalar approach is more cost effective for industry to implement.

Technological advances have allowed superscalar and superpipelining techniques to be combined, providing good solutions to many current efficiency problems found in the computing industry. Such solutions, which attempt to take advantage of the positive attributes of each design, can be studied in existing processors. One example is the alpha microprocessor [DIG 92]. This microprocessor is described in detail in Chapter 4.

3.3 ARITHMETIC PIPELINE

Some functions of the arithmetic logic unit of a processor can be pipelined to maximize performance. An arithmetic pipeline is used for implementing complex arithmetic functions like floating-point addition, multiplication, and division. These functions can be decomposed into consecutive subfunctions. For example Figure 3.13 presents a pipeline architecture for floating-point addition of two numbers. (A nonpipelined architecture of such an adder is described in Chapter 2.) The floating-point addition can be divided into three stages: mantissas alignment, mantissas addition, and result normalization [MAN 82, HAY 78].
In the first stage, the mantissas M_1 and M_2 are aligned based on the difference in the exponents E_1 and E_2. If $|E_1 - E_2| = k > 0$, then the mantissa with the smaller exponent is right shifted by k digit positions. In the second stage, the mantissas are added (or subtracted). In the third stage, the result is normalized so that the final mantissa has a nonzero digit after the fraction point. When necessary, this normalized adjustment is done by shifting the result mantissa and the exponent.

Another example of an arithmetic pipeline is shown in Figure 3.14. This figure presents a pipelined architecture for multiplying two unsigned 4-bit numbers using carry save adders. The first stage generates the partial products M_1, M_2, M_3, and M_4. Figure 3.14 represents how M_1 is generated; the rest of partial products can be generated in the same way. The M_1, M_2, M_3, and M_4 are added together through the two stages of carry save adders and the final stage of carry lookahead adder. (A nonpipelined architecture of such a multiplier is described in Chapter 2.)
3.4 PIPELINE CONTROL: SCHEDULING

Controlling the sequence of tasks presented to a pipeline for execution is extremely important for maximizing its utilization. If two tasks are initiated requiring the same stage of the pipeline at the same time, a collision occurs, which temporarily disrupts execution. This section presents a method to control the scheduling of a pipeline. (A detailed explanation and analysis of pipeline scheduling are given in [KOG 81].) Before the description of such a method can be given, reservation table and latency concepts must be defined.

Reservation table. There are two types of pipelines: static and dynamic. A static pipeline can perform only one function at a time, whereas a dynamic pipeline can perform more than one function at a time. A
pipeline reservation table shows when stages of a pipeline are in use for a particular function. Each stage of the pipeline is represented by a row in the reservation table. Each row of the reservation table is in turn broken into columns, one per clock cycle. The number of columns indicates the total number of time units required for the pipeline to perform a particular function. To indicate that some stage S is in use at some time t_i, an X is placed at the intersection of the row and column in the table corresponding to that stage and time. Figure 3.15 represents a reservation table for a static pipeline with three stages. The times $t_0, t_1, t_2, t_3,$ and t_4 denote five consecutive clock cycles. The position of X’s indicate that, in order to produce a result for an input data, the data must go through the stages $1, 2, 2, 3,$ and 1, progressively. As shown later in this section, the reservation table can be used for determining the time difference between input data initiations so that collisions won't occur. (Initiation of an input data refers to the time that the data enter the first stage of the pipeline.)

![Figure 3.15](Image)

Latency. The delay, or number of time units separating two initiations, is called latency. A collision will occur if two pieces of input data are initiated with a latency equal to the distance between two X's in a reservation table. For example, the table in Figure 3.15 has two X's with a distance of 1 in the second row. Therefore, if a second piece of data is passed to the pipeline one time unit after the first, a collision will occur in stage 2.

3.4.1 Scheduling Static Pipelines

Forbidden list. Every reservation table with two or more X's in any given row has one or more forbidden latencies, which, if not prohibited, would allow two data to collide or arrive at the same stage of the pipeline at the same time. The forbidden list F is simply a list of integers corresponding to these prohibited latencies. With static pipelines, zero is always considered a forbidden latency, since it is impossible to initiate two jobs to the same pipeline at the same time. (However, as shown later, such initiations are possible with dynamic pipelines.) For example, the reservation table in Figure 15 has the forbidden list $(4,1,0)$. Each element of this list can be figured by calculating the distance between two X's in a particular row.

Collision vectors. A collision vector is a string of binary digits of length $N+1$, where N is the largest forbidden latency in the forbidden list. The initial collision vector, C, is created from the forbidden list in the following way: each component c_i of C, for $i=0$ to N, is 1 if i is an element of the forbidden list. Otherwise, c_i is zero. Zeros in the collision vector indicate allowable latencies, or times when initiations are allowed into the pipeline.

For the preceding forbidden list $(4,1,0)$, the collision vector is

$$C = \begin{pmatrix} c_4 & c_3 & c_2 & c_1 & c_0 \\ 1 & 0 & 0 & 1 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix} = \text{latency.}$$

Notice in this collision vector that latencies of 2 and 3 would be allowed, but latencies of 0, 1, and 4 would not.
State diagram. State diagrams can be used to show the different states of a pipeline for a given time slice. Once a state diagram is created, it is easier to derive schedules of input data for the pipeline that have no collisions.

To create the state diagram of a given pipeline, the initial state is always the initial collision vector. If there is a zero in position c_i, then an initiation to the pipeline is allowed after i time units or clock cycles. Figure 3.16 represents a state diagram for the pipeline of Figure 3.15. The collision vector 10011 forms the initial state. Note that the initial state has zero in positions 2 and 3. Therefore, a new datum can be initiated to the pipeline after two or three clock cycles. Each time an initiation is allowed the collision vector is shifted right i places with zeros filling in on the left. This corresponds to the passing of i time units. This new vector is then ORed with the initial collision vector to generate a new collision vector or state. ORing is necessary because the new initiation enforces a new constraint on the current status of the pipeline. Whenever a new collision vector is generated from an existing collision vector in the state diagram, an arc is drawn between them. The arc is labeled by latency i. The process of generating new collision vectors continues until no more can be generated.

Within a state diagram, any initiation of value $N+1$ or greater will automatically go back to the initial collision vector. This is simply because the current collision vector is shifted right $N+1$ places with zeros filling in on the left, producing a collision vector of all zeros. When a collision vector of all zeros is ORed with the initial collision vector, the initial collision vector is the result.

Average latency. The average latency is determined for a given cycle in a state diagram. A cycle in a state diagram is an alternating sequence of collision vectors and arcs, C_0, a_1, C_1, ..., a_n, C_n, in which each arc a_i connects collision vector C_{i-1} to C_i, and all the collision vectors are distinct except the first and last. For simplicity, we represent a cycle by a sequence of latencies of its arcs. For example, in Figure 3.16, the cycle C_0, a_1, C_1, a_2, C_0, where $C_0=(10011)$, $C_1=(10111)$, a_1 is an arc from C_0 to C_1, and a_2 is an arc from C_1 to C_0, is represented as cycle $C=(2,3)$, where 2 and 3 are the latencies of a_1 and a_2, respectively.

The average latency for a cycle is determined by adding the latencies (right-shifts values) of the arcs of the cycle and then dividing it by the total number of arcs in the cycle. For example, in Figure 3.16, the cycle $C=(2,3)$ has the average latency:

$$\frac{2 + 3}{2} = 2.5.$$

![Figure 3.16 State diagram of a static pipeline.](image)

Minimum average latency. A pipeline may have several average latencies associated with different cycles. The minimum average latency is simply the smallest such ratio. For example, the following are the average latency cycles for the state diagram in Figure 3.16:

- $\frac{2 + 3}{2} = 2.5$ from cycle C_0, a_1, C_1, a_2, C_0
- $\frac{2 + 5}{2} = 3.5$ from cycle C_0, a_1, C_1, a_2, C_0
- $\frac{3}{1} = 3$ from cycle C_0, a_3, C_0
- $\frac{5}{1} = 5$ from cycle C_0, a_3, C_0
Therefore, the minimum average latency (MAL) is 2.5. Although the cycle with the minimum average latency maximizes the throughput of the pipeline, sometimes a less efficient cycle may be chosen to reduce the implementation complexity of the pipeline's control circuit (i.e., a trade-off between time and cost.) For example, the cycle \(C=(2,3) \), which has the MAL of 2.5, requires a circuit that counts three units of time, then two units, again three units, and so on. However, if it is acceptable to initiate an input datum after every three units of time, the complexity of the circuit will be reduced. Therefore, sometimes it may be necessary to determine the smallest latency that can be used for initiating input data at all times. Such a latency is called the minimum latency. One way to determine the minimum latency is to choose a cycle of length 1 with the smallest latency from the state diagram. Another way is to find the smallest integer whose product with any arbitrary integer is not a member of the forbidden list. For example, for the forbidden list \((4, 1, 0)\), the minimum latency can be determined as follows:

<table>
<thead>
<tr>
<th>Minimum latency</th>
<th>Times an integer</th>
<th>Product</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(\times 1)</td>
<td>= 1</td>
<td>No good</td>
</tr>
<tr>
<td>2</td>
<td>(\times 1)</td>
<td>= 2</td>
<td>OK</td>
</tr>
<tr>
<td>2</td>
<td>(\times 2)</td>
<td>= 4</td>
<td>No good</td>
</tr>
<tr>
<td>3</td>
<td>(\times 1)</td>
<td>= 3</td>
<td>OK</td>
</tr>
<tr>
<td>3</td>
<td>(\times 2)</td>
<td>= 6</td>
<td>OK</td>
</tr>
<tr>
<td>4</td>
<td>(\times 1)</td>
<td>= 4</td>
<td>No good</td>
</tr>
</tbody>
</table>

Therefore the minimum latency for this pipeline is 3.

3.4.2 Scheduling Dynamic Pipelines

When scheduling a static pipeline, only collisions between different input data for a particular function had to be avoided. With a dynamic pipeline, it is possible for different input data requiring different functions to be present in the pipeline at the same time. Therefore, collisions between these data must be considered as well. As with the static pipeline, however, dynamic pipeline scheduling begins with the compilation of a set of forbidden lists from function reservation tables. Next the collision vectors are obtained, and finally the state diagram is drawn.

Forbidden lists. With a dynamic pipeline, the number of forbidden lists is the square of the number of functions sharing the pipeline. In Figure 3.17 the number of functions equals 2, \(A\) and \(B\); therefore, the number of forbidden lists equals 4, denoted as \(AA, AB, BA, \) and \(BB \). For example, if the forbidden list \(AB \) contains integer \(d \), then a datum requiring function \(B \) cannot be initiated to the pipeline at some later time \(t+d \), where \(t \) represents the time at which a datum requiring function \(A \) was initiated. Therefore, \n\n\[
AA = (3,0), \quad AB = (2,1,0), \quad BA = (4,2,1,0), \quad \text{and} \quad BB = (3,2,0).
\]
Collision vectors and collision matrices. The collision vectors are determined in the same manner as for a static pipeline: 0 indicates a permissible latency and a 1 indicates a forbidden latency. For the preceding example, the collision vectors are

\[
C_{AA} = (0 \ 1 \ 0 \ 0 \ 1) \quad C_{BA} = (1 \ 0 \ 1 \ 1 \ 1) \\
C_{AB} = (0 \ 0 \ 1 \ 1 \ 1) \quad C_{BB} = (0 \ 1 \ 1 \ 0 \ 1).
\]

The collision vectors for the \(A \) function form the collision matrix \(M_A \), that is,

\[
M_A = \begin{bmatrix} C_{AA} \\ C_{AB} \end{bmatrix}.
\]

The collision vectors for the \(B \) function form the collision matrix \(M_B \):

\[
M_B = \begin{bmatrix} C_{BA} \\ C_{BB} \end{bmatrix}.
\]

For the above collision vectors, the collision matrices are

\[
M_A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix},
\]

\[
M_B = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}.
\]

State diagram. The state diagram for the dynamic pipeline is developed in the same way as for the static pipeline. The resulting state diagram is much more complicated than a static pipeline state diagram due to the larger number of potential collisions.

As an example, consider the state diagram in Figure 3.18. To start, refer to the collision matrix \(M_A \). There are two types of collisions: an \(A \) colliding with another \(A \) (the top vector) or an \(A \) colliding with a \(B \) (the bottom vector.) If the first allowable latency from \(C_{AA} \) is chosen, in this case 1, the entire matrix is shifted right 1 place, with zeros filling in on the left. This new matrix is then ORed with the initial collision matrix \(M_A \) because the original forbidden latencies for function \(A \) still have to be considered in later initiations.

If the first allowable latency for vector \(C_{AB} \) in matrix \(M_A \) is chosen, in this case 3, the entire matrix is shifted right three places with zeros filling in on the left. This new matrix is then ORed with the initial collision matrix for function \(B \), because the original collisions for function \(B \) are still possible and have to be considered. This shifting and ORing continues until all possible allowable latencies are considered and the state diagram is complete.
3.4.3 Decreasing the MAL of a Pipeline Using Delay Insertion

Sometimes it is possible to modify the reservation table of a pipeline so that the overall structure is unchanged, but the overall throughput is increased (i.e., the MAL is decreased). The reservation table can be modified with the insertion of delays or dummy stages in the table. Insertion of a delay in the table reflects the insertion of a latch in front of or after the logic for a stage. For example, Figure 3.19 represents the changes in a reservation table and its corresponding pipeline before and after delay insertion.

Figure 3.19 Changes in a reservation table and its corresponding pipeline before and after delay insertion. (a) Before insertion of delay. (b) Inserting a delay between the two stages. Two equivalent forms for the reservation table are shown; we select form II.

Given a desired cycle, the technique for delay insertion places some delays in certain rows of the original reservation table. Such delays may force the marks on certain rows to be moved forward. The location of the delays is chosen such that each row of the table matches some criteria of a cycle that the designer wishes to have. To understand the process of delay insertion, consider the reservation table shown in Figure 3.20. The MAL for this reservation table is 2.5. As indicated, there is at least one row with two
marks (X’s), which means that for each input there is a stage that will be used at least two times. Therefore, we wish to modify this reservation table in such a way that MAL becomes 2.

In general, the lower bound for the MAL is greater than or equal to the maximum number of marks in a row of the reservation table. The lower bound can be achieved by delay insertion, which increases the time per computation. To have a MAL = 2, we start with a cycle, say \(C = (2) \), and determine the properties of a reservation table that supports it. To do this, we need to define the following parameters.

1: \(L_c \), the latency sequence, is the sequence of time between successive data that enter the pipeline. For cycle \(C = (2) \),
\[
L_c = 2, 2, 2, 2, 2, \ldots .
\]

2: \(I_c \), the initiation time sequence, is the starting time for each datum. The \(i \)th (\(i > 0 \)) element in this sequence is the starting time of the \(i \)th initiated data, so it equals the sum of the latencies between the previous initiations. For the preceding \(L_c \),
\[
I_c = 0, 2, 4, 6, 8, 10, \ldots .
\]

3: \(G_c \), the initiation interval set, is the set of all distinct intervals between initiation times. That is, \(G_c = \{ t_i - t_j \text{ for every } i > j \} \), where \(t_i \) and \(t_j \) are the \(i \)th and \(j \)th elements in the initiation time sequence, respectively. For our example,
\[
G_c = 2, 4, 6, 8, \ldots .
\]

Note that \(G_c \) determines the properties that a reservation table must have in order to support cycle \(C \). If an integer \(i \) is in \(G_c \), any reservation table supporting cycle \(C \) cannot have two marks with distance of \(i \) time units (clocks) in any row. For example, for our cycle \(C \), distances of 1 or 3 are possible because they are not in \(G_c \). In general, it is easier to consider the complement of \(G_c \). This is denoted by \(H_c \) and defined next.

4: \(H_c \), the permissible distance set, is the complement of set \(G_c \) (i.e., \(H_c = Z - G_c \), where \(Z \) is the set of all non negative integers). For our cycle,
\[
H_c = 0, 1, 3, 5, 7, \ldots .
\]

Therefore, any reservation table that supports a cycle \(C \) should have marks with distances that are allowed in \(H_c \), that is \(H_c \) showing permissible (but not mandatory) distances between marks. In other words, if a reservation table has forbidden list \(F \), then the cycle \(C \) is valid if
\[
F \subseteq H_c \quad \text{or} \quad F \cap G_c = \emptyset.
\]

Since the set \(H_c \) is infinite, it is hard to deal with in the real world. Thus we try to make it finite by considering \(H_c \) (mod \(p \)), where \(p \) is the period of the cycle \(C \), that is, the sum of the latencies. This is an accurate categorization of all permissible distances, since the latency sequence repeats with period \(p \). For our example,
\[
H_c \text{ (mod 2) } = \{0, 1\}.
\]
To facilitate the process of testing or constructing a reservation table, the following definition and theorem are given in [KOG 81].

Definition: Two integers \(i, j \in \mathbb{Z}_p \), where \(\mathbb{Z}_p \) is the set of all nonnegative integers less than \(p \), are compatible with respect to \(H_c \pmod{p} \) if and only if \(|i - j| \pmod{p} \in H_c \pmod{p} \). A set is called a compatible class if every pair of its elements are compatible.

Theorem: Any reservation table to support cycle \(C \) must have rows with marks at the following times:

\[
z_1 + i_1 p, \ z_2 + i_2 p, \ldots ,
\]

where \(\{ z_1, z_2, \ldots \} \) is a compatible class of \(H_c \pmod{p} \) and \(i_1, i_2, \ldots \), are arbitrary integers.

We can apply this theorem to some compatible classes in order to construct all possible rows for a reservation table that supports a particular cycle.

In our example, one compatible class is \(\{0,1\} \). Considering the original reservation table, the first row has two marks at time 0 and 4. When the positions of these marks are matched against the compatible class \(\{0,1\} \), the first mark (position 0) matches, but not the second. Adding \(2 \times p \) (i.e., 4) to the second element (i.e.: 1) gives us \(\{0,5\} \), so we can delay the second mark by one time unit. For the second row, we add \(1 \times p \) (i.e., 2) to each element \(\{0,1\} \), so the new positions for the marks become 2 and 3.

Figure 3.21.a represents a modified reservation table. This table is based on the assumption that input data to the stage 3 is independent from the result of stage 2. Figure 3.21.c represents an alternative solution in which there is assumed to be dependency between stages 2 and 3. The state diagram for these reservation tables is shown in Figure 3.21.b.

![Figure 3.21](image-url)

Figure 3.21 Reservation tables with MAL of 2.