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Abstract— The aim of disseminating this research article is to 
showcase a novel path planner method, which is shown to be an 
efficient offline path planner in terms of its capacity for analyzing 
workspace robot maneuvering skills and constructing collision 
free trajectories that yield the shortest possible path from initial 
point toward goal configuration. The determined route is 
considered to be adequately secure such that it enables the mobile 
robot to maneuver among obstacles in the workspace without 
dangers of encountering a near miss. In addition, this paper 
evaluates our novel path planner algorithm abilities and skills by 
examining it against different workspaces. We assess our novel 
path planner by comparing it to two of the most popular planners 
with the purpose of revealing its capability to route trajectories in 
regards to building optimal trajectory distances from initial to the 
goal configurations.  

Keywords— Path planning, Rapidly Optimizing Mapper, Robot 
path planning, Robot trajectory builder 

I. INTRODUCTION  
 regular robot that is capable of performing an assigned 
task typically consists of many units that cooperate 
together for the sole purpose of enabling it to 

successfully achieve its missions. As an important functionality 
that plays a vital role for a robot to function appropriately, robust 
path planning is essential. The central task of a path planner is 
to analyze the robot’s surrounding using equipped sensors and 
plan a secure and reasonable trajectory that guarantees a safe 
traversal for the robot from initial point to the goal 
configuration. The concept of security for the calculated path is 
commonly understood to be on a collision less trajectory that the 
path planner determines corresponding to the accuracy and 
reliability of detecting objects around the robot while moving 
toward its goal. The traversal distance of a path that is computed 
by the path planner component is directly related to the 
methodology employed by the planner when it composes the 
trajectory. Since the last few decades, we have witnessed several 
diverse methods proposed for path planning where each has its 
own advantages and disadvantages. The path planner is 
considered reliable in regards to planning a secure path when it 
is demonstrates that it maintains generous distances between the 
robot and every obstacle in the workspace. The objective for 
safety is often at odds with the objective for constructing an 
optimal path in terms of planning the shortest possible collision 
less trajectory from start point to the goal configuration.  

Earliest reported work on robotic path planners has been the 
Potential Field planning method proposed in [2], and [13]. The 

Potential Field path planner employs the concept of virtual 
electromagnetic fields in the workspace modeled by a simulated 
attraction force towards desired points (i.e., goal/destination 
points) as well as repulsive forces from undesirable points (i.e., 
points occupied by obstacles). Each of these forces are simulated 
by a vector that captures the direction and magnitude of the 
force. Whereas the goal point vectors continuously exert pulling 
force for the robot, vectors corresponding to obstacles exert 
pushing away forces. At any point during path planning, the 
trajectory is adjusted to coincide with the result of reconciling 
the cumulative sum of applicable vector forces and directions. 
An impulse movement along the suggested path moves the robot 
to the next consecutive point along the trajectory. The 
magnitude of the impulse step is a parametric value 
corresponding to the path granularity. An overall trajectory for 
a pair of start and finish points is the accumulation of 
consecutive impulse moves.  The process of path planning 
through Potential Field method guarantees a collision less 
trajectory from initial to goal configurations. However, due to 
the electromagnetic fields’ constraints, this method performs 
poorly in certain scenarios. For example local minima is seen 
that causes when the robot becomes trapped in U-Shape 
obstacles (i.e., box canyons). There are other planner issues such 
as obstacles that leave narrow passage ways creating erratic 
trashing forces that can be either redundantly cyclic or 
contradictory forces. Latter problems often lead to impasse 
phenomenon: [5], [11], [14]. Many papers have proposed 
different solutions by updating the original algorithm or 
combining different method with the Potential Field planner 
construction to remedy specific problems: [3], [9], [7], [10], 
[19]. The Rapidly-exploring Random Trees is a sampling based 
mapping technique that solves non-holonomic constraints and it 
was introduced in [15]. Information-rich Rapidly-exploring 
Random Trees proposed in [16] is the extension of the Rapidly-
exploring Random Trees, which is able to maneuver more 
efficiently to build the trajectory in workspaces with the 
presence of different constraint domains such as complex 
moving agent dynamics and moving robots sensor limitations in 
terms of resolution and narrow the detection view site. Several 
researchers have developed hybrid solutions, and hence, several 
studies and approaches related to the hybrid path planners are 
reported in [1], [4], [6], [12], [17], [18], and [20]. A hybrid path 
planner typically takes advantages from multiple path planning 
strategies, which are combined into a unique algorithm. Hybrid 
planners are promising to address more efficient path planning 
in order to elevate the quality and accuracy of the generated 
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trajectories and also overcome various constraints and situations 
that can affect the traditional path planners in analyzing and 
determining optimal possible trajectories. In the next section, we 
illustrate the general concepts and methods that our planner 
employs to produce an optimal trajectory. In order to evaluate 
the performance of our planner, in subsequent section three, we 
will compare it with two other path planners by applying them 
on two sample workspaces. This paper further explores 
efficiency issues for our Rapidly Optimizing Mapper (ROM). 

II. FOUNDATIONS AND FUNCTIONS OF OUR ROM 
FRAMEWORK 

We have fabricated our planner on the premise of a multi-layer 
approach in the form of a unique algorithm such that each layer 
uses data provided from the prior layer and is responsible to 
generate the needed information for the following level. Each 
layer is also treated as a phase of a sequentially phased system 
that provides data for the next phase using information 
processes in the previous phase. Our ROM planner algorithm is 
constructed based on five general levels along with initial and 
final phases indicating as follows: initial phase, workspace 
analyzer, graph builder, and shortest path calculation unit. 
Each of the mentioned phase along with their objectives is 
detailed in the remainder of this section. 

 
Initializing phase: This phase is achieved by adjusting 

values for variables that are salient constituents for building a 
trajectory. We considered the key feature of path security, 
which has a direct bearing on the robot maneuvering skills. 
Consideration for this element has to be determined at the initial 
phase as the primitive value which helps the planner to 
construct proper trajectories. The standoff distance, (SD) is our 
main path security parametric variable that is defined to be the 
width of a virtual buffer zone around perimeters of obstacles in 
order to specify a safety area for pathways within which enables 
the robot to navigate without involving collisions. The security 
channel width is determined based on robot sensors accuracy 
specifications. The more sensitive obstacle detection equipment 
the robot possesses, the lower security consideration required 
for the width of the safety channel. Each robot, based on the 
type of mission and the terrain specifications, is equipped with 
different capabilities such as actuators and sensors that equip it 
to move around and detect objects in the environment and 
thereby adjusts its path toward the determined trajectory 
instructed by the path planner.  

 
Workspace analyzer: This phase of ROM is responsible for 

analysis of the workspace obstacles to determine roadblock 
obstacles as well as roadblock obstacles side edge nodes 
generation. The roadblock obstacles will be recognized by 
considering virtual straight lines from valid accessible nodes 
(i.e., safe obstacle boundary points) toward goal configuration. 
The valid nodes are in the form of a group of certain nodes 
starting from the initial configuration and ending with the goal 
location along with the group of roadblock side edge nodes. As 
it is illustrated in figure 1, the workspace analyzer phase obtains 
the first group of roadblock side edge nodes by considering 

straight rays from candid nodes toward goal configuration. Any 
obstacle that shares intersecting points with the start-goal line 
in at least one hit point is classified as a roadblock obstacle. The 
number of detected roadblock obstacles will vary based on the 
number of obstacles intersecting with the start-goal straight 
line. The best scenario occurs when there are no roadblock 
obstacles in the workspace. In such a situation, the optimal 
trajectory will be considered to be the straight line from start 
point to the goal configuration. 
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Figure 1. A sample roadblock obstacles side edge nodes 

generated from the workspace analyzer unit 
 
Graph builder: The main objective of this phase of ROM 

is to form a complete graph consisting of roadblock side edge 
nodes combined with the start and goal configuration points. In 
order to achieve this goal, ROM enforces multiple steps. As the 
first step, the planner connects roadblock side edge nodes 
together to form a primitive graph of trajectories so as to enable 
maneuvering around the perimeter of the obstacle. The next 
step is to examine roadblock side edge nodes in order to 
recognize uncompleted nodes and to adjust them. Uncompleted 
nodes will be considered based on roadblock side edge nodes 
belonging to a single obstacle that are not yet connected to one 
another that do not go across the surface of the obstacle and 
remain entirely at one possible contiguous side of the obstacle. 
In other words, the path planner at this processing stage 
examines side edge nodes of each single roadblock obstacle to 
assure that they trail each other contiguously and steer clear of 
the surface of the obstacle. We use this technique to enable our 
planner to consider all possible paths crossing from roadblock 
side edge nodes with the purpose of elevating the planner ability 
to consider all possible paths toward goal and increasing the 
accuracy in determination of the shortest possible trajectory 
toward goal configuration. To obtain the best results in terms of 
refining the shortest possible trajectories, the path planner, as 
the next step, simplifies the paths via removing nodes that are 
located in between pairs of visible nodes. Visible nodes will be 
recognized if there is a possibility to connect two nodes through 
a straight path without intersecting any obstacles in the 
workspace. The last step of this phase of the planner consists of 
adjusting Euclidean distances for the remaining pairs of nodes 
that are already processed. The final result of this phase of 
ROM is a completed graph including start and goal points. 
Depending on the specifications of elements in the workspace, 
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such as the number, size, shape and locations of obstacles, the 
pattern of the lattice and hence, the graph that forms through 
the graph builder phase will vary. Different scenarios result in 
having different numbers of paths from start to goal 
configurations.  

 
Shortest path calculation unit: This phase of our planner 

adopts the Dijkstra algorithm, [8], in order to refine the shortest 
trajectory from start point toward goal configuration. Our 
planner uses the graph, which is generated at the previous phase 
of the planner as input data. The mentioned graph consists of 
all possible pathways that are optimized through the path 
planner optimization steps and eventually constructed as a form 
of graph. The predominant task of this phase is to examine all 
available paths in the graph and subsequently produce the best 
possible trajectory consisting of roadblock side edge nodes as 
the optimal path. The output of this phase is the final result of 
the planner in generating the trajectory, which is the optimal 
single collision less path from start point to the goal 
configuration. 

III. EXPERIMENTS AND EVALUATION OF ROM 
In order to assess our planner performance, we compare it with 
the two other path planners including Potential Field and 
Rapidly-exploring Random Trees path planners. The process of 
evaluation is conducted by applying our planner as well as the 
mentioned path planners on two exemplar workspaces that are 
both illustrated in figure 2. 
 

     
 

Figure 2. Left: The first candidate environment for applying 
path planners. Right: The second candidate workspace 

 
The first map illustrated in figure 2 (left), consists of four 

obstacles with different polygonal geometric shapes and 
locations whereas figure 2 (right) consists of three obstacles. As 
seen in the figure 2, we considered a narrow distance between 
obstacles with the purpose of evaluating the skills of path 
planner algorithms to analyze and determine the optimal 
trajectories in terms of distance from start to goal 
configurations and the security of the constructed path. Both 
workspaces are considered to have the same dimensions of 500 
by 500. The vertical axis spans from up to down and the 
horizontal axis emanates from left to right. The initial point for 
the first workspace is considered at the point (50, 50) and the 
goal location is at (450, 450). The start location for the second 
environment is at (20, 450). The goal for the second workspace 

is also located at (450, 450). The following figures 3 illustrate 
the resultant trajectory from applying out path planner on the 
sample workspaces. 

 

  
 

Figure 3. Left: The resultant trajectory from applying ROM on 
the first workspace. Right: The resultant path from applying 

ROM on the second environment 
 

The optimal path, which is constructed using our planner 
algorithm is shown as a bright path trajectory starting from 
initial point to the goal configuration. The Euclidean distance 
from start location to the goal configuration is calculated to be 
709.12 units for the first environment and 1018.43 units long 
for the second workspace. The trajectory resultant of applying 
our novel path planner shown in both workspaces in figure 3 
indicates that our planner is able to route a collision less path, 
successfully. Moreover, neither obstacle complexity in terms of 
shapes nor the distances between obstacles could permit the 
planner to route the best possible trajectory in terms of the 
safety and the length toward goal. This is because our planner 
considers all possible valid directions around each roadblock 
obstacle to achieve the best results in determining the optimal 
trajectory. In addition, our planner benefits from using 
nontrivial strategies to reconstruct the generated graph in the 
early stages of its algorithm with the purpose of recognizing the 
best candidates among all possibilities of different routes and 
generating worthwhile trajectories, regardless of constraints 
posed by different scenarios in workspaces.    

In order to compare the performance of ROM path planner 
skills with other planners, we employed two path planners in 
offline mode, specifically Potential Field path planner and 
Rapidly-exploring Random Trees algorithm. Each planner is 
applied on the sample workspaces in the form of a different case 
study and the results of each scenario are discussed in detail. 
Through case study I, the process of planning trajectories using 
Potential Filed algorithm will be analyzed. 

 
Case study 1: 
The Potential Field algorithm performs the trajectory based on 
considering start and goal points as well as obstacles as 
electromagnetic charges and fields. The goal point has the most 
attractive power (i.e., exerting attraction force) among other 
objects in the workspace, whereas obstacles repel (i.e., exert 
pushing way force) the planner path finder away from them. 
The Potential Field planner method benefits this strategy to 
build a collision less trajectory. The following figure 4 shows 
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the result of the path generated by applying the Potential Field 
algorithm on the sample workspaces. 
 

   
 

Figure 4. Left: The resultant trajectory from applying the 
Potential Field path planner on the first workspace. Right: The 
resultant path from applying the Potential Field on the second 

environment 
 

The constructed trajectory resultant from applying the 
Potential Field method on sample workspaces are considered 
in a dark path starting from start into goal configuration. The 
trajectory length from start point to the goal configuration for 
the first map is equal 984.16 units based on Euclidean distance 
measurement. The Potential Field planner is also computed the 
path length for the second environment to be 1984.31 long in 
Euclidean distance measurement. As it is evident in both maps 
in figure 4, the final generated trajectories consist of several 
curvatures. This event can be explained according to the 
similarity of simulated charges between the trajectory and 
obstacles.  In addition, the rate of severe curves increases when 
the path is crossing from sharp obstacle edges nearby. This is 
because of forming electromagnetic fields with different 
intensities around sharp edges of obstacles that cause the 
Potential Field planner to continuously adjust the path based on 
different amounts of repulsion forces around the mentioned 
areas. Also, in the second workspace illustrated in the figure 4, 
(right), the planner was not able to consider the trajectory with 
shorter route. This is because there exists many adjacent sharp 
edges between two T-Shape and square obstacle that push the 
planner to stay out of the pathway crossing from the shorter side 
toward goal configuration. Comparing constructed trajectories 
in both workspaces through the Potential Field planner reveals 
that the planner is able to route a collision less trajectory in both 
environments. It is, however, suffering from the side effects of 
electromagnetic fields forming around nearby obstacles, 
especially around obstacles sharp edges surroundings to 
consider the optimal paths in terms of length and hence reduces 
the performance of the Potential Field planner. 

The next case study is dedicated to examining the Rapidly-
exploring Random Trees path planner on the sample 
workspaces to evaluate its performances on determining the 
optimal trajectories.  

   
Case study 2: 
The Rapidly-exploring Random Trees method works based on 
forming random trees consisting of a group of arbitrary sample 
points located outside of the obstacles in the workspace. The 

planner algorithm will then examines all possibilities of 
branches that form randomly around the main stem of the 
generated trees at each moment during the path generation 
process and gradually selects the best collision less matches in 
terms of the length and security, as sub-optimal trajectories 
among them. The planner constructs the final path from 
considering all optimal sub-trajectories obtained in the previous 
level. The following figure 5 demonstrates the resultant 
trajectory determined from the application of the Rapidly-
exploring Random Trees on two sample workspaces. 
 

   
 

Figure 5. Left: The resultant trajectory from applying the 
Rapidly-exploring Random Trees planner on the first 

workspace. Right: The resultant path from applying the 
Rapidly-exploring Random Trees algorithm on the second 

environment 
 

The Euclidean distance from the start configuration for the 
trajectory length resultant from applying the Rapidly-exploring 
Random Trees on the first workspace is calculated to be 865.52 
units for the first scenario. The Rapidly-exploring Random 
Trees is also determined to be 1252.89 units long Euclidean 
distance from start point for the second workspace. Because the 
nature of the RRT planner algorithm in forming random nodes 
to explore the workspace surroundings and to refine the best 
matches, we observe that the planner constructs trajectories that 
are slightly different from each other at every run. Benefiting 
the techniques of using random nodes leads the planner to 
achieve collision less trajectories that are close to the optimal 
trajectories in most cases. It is, however, still is not able to reach 
the shortest possible collision less trajectories due to lack of 
existing proper methods to shortened the final generated path in 
the planner construction. As it can be examined in figure 4, 
(right), the issue that is addressed above exhibits a larger effect 
in accuracy reduction to determining the shortest possible path 
in the area between the T-Shaped and the square obstacles.  

In order to clarify the best results in trajectory lengths, we 
collected all results that our ROM planner as well as other path 
planner candidates achieved in a single trajectory length chart 
as shown in the following figure 6: 
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Figure 6. The trajectory distance chart of computer path for 
the Rapidly Optimizing Mapper as well as Potential Field and 

Rapidly-exploring Random Trees path planners 
 

Comparing trajectory distances illustrated in the figure 6 
reveals that our planner is able to route the most efficient 
trajectories in terms of shortest paths among other candidates. 
In other words, Rapidly Optimizing Mapper exhibits a higher 
performance for building collision less trajectories in terms of 
distances from start points to the goal configurations. 
Employing the Potential Field algorithm to route trajectory in 
workspaces with close obstacles and sharp edges reduces the 
performance of the planner dramatically as it illustrated in the 
second workspace trajectory rate in figure 6. In order to 
overcome the mentioned environmental constraints, our 
planner benefits from specific techniques to optimize the 
calculated paths during the process of planning helps our 
planner to take all possible paths into account for the planning 
operation.  

IV. CONCLUSION AND PERSPECTIVES 
A novel path planner termed ROM has been elaborated within 
this research article. We demonstrated our novel path planner 
specifications and abilities by illustrating its constituent 
components. In order to validate the performance of our 
planner, we considered sample workspaces with complex 
constraints that contain a variety of different shapes and 
locations to apply and evaluate the planner performances for 
building trajectory skills on different scenarios. In order to 
clarify our novel path planner’s strength for determining the 
ultimate trajectories, we compared it with two of the best 
known path planners through applying them on the same 
sample workspaces. Based on the obtained results, we conclude 
that ROM is able to compute the optimal trajectories in terms 
of path length more efficiently. This is because we adopted 
techniques to furnish our planner with the intention of elevating 
its abilities to operate overcoming a variety of different 
constraints on workspaces elements specifications. Our future 
target is to examine our novel path planner on workspaces with 
more constraints along with upgrading its structure to heighten 

its efficiency to act limitlessly in any types of environment, 
flawlessly.  
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