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Abstract 
In the paper we introduce a quantitative 
measure of autonomy in multiagent 
interaction. We quantify and analyze 
different types of agent autonomy with 
respect to (a) an agent’s user, (b) the other 
agents, and (c) the other groups of agents. 
We also introduce a measure of group 
autonomy that accounts for the degree 
with which one group depends on another 
group. We analyze the question of finding 
a multiagent group with maximum overall 
autonomy and we prove that this problem 
is NP-complete. Therefore, the problem of 
finding the optimal group or agent with 
whom to share a task (or to whom to 
delegate a task) is computationally hard in 
general. This prompts for developing 
approximation algorithms for measuring 
and adjusting autonomy. 

1.  Introduction 
The concept of autonomy plays an important role 
in multiagent interaction. It relates to an 
individual or collective ability to decide and act 
consistently without outside control or 
intervention. Autonomy has been a subject of 
continuous interest in different research areas 
including multiagent systems (Castelfranchi, 
1995 and 2000, Hexmoor, 2000a; Hexmoor and 
Kortenkamp 2000), sociology (Dworkin, 1988), 
and philosophy (Mele, 1995; Schneewind, 1997). 
 The notion of autonomy has been used in a 
variety of senses and has been studied in 
different contexts. Autonomy could be relative to 
an individual or a group. Autonomy can be in 
regards to either acting or decision-making. 
Depending on the context we can have autonomy 
with respect to the physical environment or with 
respect to the social environment. A usual way to 
look at autonomy is to see it as self-control, 
which is an ambiguous concept, because it might 
be referring to either the capacity or competency 
to control oneself, or to the actual condition of 
self-control, or to the authority to control 
oneself. 
  
  

 
It is clear that the main problem of autonomy is 
to explain how autonomous agents make 
decisions and how they act upon them. In this 
regard it is worthwhile to distinguish between 
action autonomy and decision autonomy. Action 
autonomy relates to the way an agent acts in the 
environment. For example, an agent may have 
partial control over the environmental events that 
affect the outcome of an action. A digital 
financial assistant may be authorized to buy a 
stock in an electronic exchange. The agent may, 
however, not have control over the transaction 
price. The price may depend on the actions of 
other financial assistants and on the network 
communication delay.  
 Decision autonomy is concerned with the 
ability of an agent to make consistent choices. A 
decision autonomous agent must have 
knowledge about the user’s preferences and the 
potential alternatives. We may be reluctant to 
classify a digital financial assistant as 
autonomous, if it keeps asking its user what 
stock to buy and at what price. 
  Throughout this paper we assume a 
distributed problem-solving environment. There 
is a single user interested in a single task, which 
can be achieved by deploying one or more 
agents. A multiagent interaction, where different 
agents act on behalf of different users, is beyond 
the scope of this paper. 
 In general, autonomy can be considered to 
have the following constituents: 
• The subject/agent of autonomy: the entity (a 

single agent or a group of agents), which has 
to be considered autonomous. 

• The influencer of autonomy: the entity that 
influences the autonomy of the 
subject./agent. It could be the human user, 
physical environment, another agent or 
group of agents. 

• The scope of autonomy: the specific means 
by which the influencer can affect 
autonomy. This can include actions, 
resources, information, indirect means, etc. 

• The object of autonomy: includes all 
elements with respect to which the 
subject/agent can be autonomous. This could 
be a single action, goal, task, etc. 
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• The degree of autonomy: measures that 
capture the extent to which influencer can 
affect autonomy. 

 There may be several objects of autonomy 
and each object may contribute in a different 
way to the overall autonomy. At the same time 
there could be several influencers; each 
influencer can have different means and each 
means may affect one or more objects of 
autonomy in different ways.  
 Depending on the influencer we can have 
autonomy with respect to an agent’s user (or 
users), autonomy with respect to the physical 
environment, and autonomy with respect to other 
agents (both human and artificial).  Autonomy in 
the context of agent-user interaction captures the 
notion of an agent’s ability to act efficiently 
without the user’s intervention. An agent may 
not be autonomous with respect to its user if it 
needs permission for certain actions. An agent 
that has full permission may still not be 
autonomous, if it has partial knowledge about the 
user’s preferences and the ways in which these 
preferences could be met. In the context of 
interaction with the physical environment, 
autonomy is one’s ability to act independently in 
the physical environment. This kind of 
environmental autonomy usually presupposes (a) 
some kind of control or mastery over the 
environmental events and objects, and (b) 
imperviousness or liberty from uncertainties, and 
(c) robustness against environmental changes. 
Autonomy in the context of social multiagent 
interaction is concerned with variations in an 
agent’s ability when other agents are involved. It 
might be desirable for an agent’s performance to 
be invariant to interactions i.e., stable and 
independent of interaction.  
 In this paper we focus on the last constituent 
of autonomy: the degree of autonomy. The 
degree of autonomy measures to what extent the 
influencer can affect the object of autonomy and 
how the change relates to the overall autonomy. 
In our case the object of autonomy is a task. It is 
evident, that the task is a complex object that is 
made up of several other objects (actions, plans, 
etc.). In order to simplify the analysis we 
consider the task as a single object and assume 
that during the task execution agents always 
make optimal decisions. 
 In order to apply a qualitative measure of 
autonomy we need a scale and some criterion for 
distinguishing between autonomous and non-
autonomous behavior. Since the object of 
autonomy is a task and it is expected to be 
executed efficiently, we use an agent’s 

performance as a scale. Since agents are 
performing a task on behalf of other agents, 
autonomy is related to some standard of 
achievement that derives from the function an 
agent serves. If an agent’s performance is error-
prone and continuously fails during a task, we 
may be reluctant to call it autonomous regardless 
of how self-directing and independent it might 
be (Meyers, 1989). Autonomy depends on 
others’ expectation and is relative to those 
expectations. For example, an agent may be 
autonomous with respect to one task and not 
autonomous with respect to another task. 
Moreover, it is possible for an agent to be 
autonomous and non-autonomous at the same 
time with respect to the same task, if different 
users apply different performance standards. The 
relativeness of autonomy becomes more 
prominent in environments where the user 
cannot predict all contingencies upfront.  
 In our previous research we investigated 
efficiency as a basis for teaming among agents 
and presented a performance-based teaming 
algorithm (Hexmoor and Duchscherer, 2001). In 
this paper we consider an agent’s performance 
relative to its context as an indicator of 
autonomy. We consider autonomy as a relative 
notion. It is understood in the context of the 
environment that can be made up of events, 
object, and other agents. In other words, in order 
to evaluate the degree of an agent’s autonomy 
we have to put the agent in touch with objects, 
events, and other agents. If an agent can perform 
in the presence of other agents at least as well as 
it performs in isolation, then the other agents are 
not restricting the agent’s autonomy. By working 
in the presence of other agents, we make no 
assumptions about explicit cooperation or 
coordination or other interagent attitudes. We 
also do not make any assumptions about 
psychological influences among agents. When in 
presence of other agents, these other agents are 
considered as a distinguished part of the 
environment. For example, a factory worker who 
gets parts for a widget and assembles it may 
work alone or alongside other agents who do the 
same. This factory worker might experience 
gains or losses in its productivity in the presence 
of these other workers, who are a special part of 
its environment.  
 Autonomy is by no means identical to 
efficiency. Later in this paper we will present the 
autonomy-efficiency dilemma and we will show 
that (a) autonomous behavior could be 
inefficient, as well as (b) efficient behavior 
might not necessarily be found with autonomous 



 
 

 

agents. Relative performance i.e., the 
performance in a context, however, could be a 
good indicator of the degree to which the context 
restricts or extends individual autonomy. The 
comparative analysis of autonomy allows us to 
define and differentiate between different kinds 
of autonomy relationships: an agent in the 
context of a group, a group in the context of 
another group, and a group in the context of an 
agent. In this paper we emphasize relative 
autonomy in the context of a user, environmental 
factors, and in a social setting.  
  Barber and Martin (1999) proposed another 
quantitative measure of agent autonomy. They 
define the degree of autonomy as an agent’s 
relative voting weight in decision-making. This 
approach has several advantages. For example, it 
allows for explicit representation and adjustment 
of the agents’ autonomy. To our knowledge, it 
has been the first attempt to describe an agent’s 
autonomy from a decision-theoretic point of 
view.  Several indexes of agents’ voting power 
have been proposed (Banzhaf,  1965; Shapley 
and Shubik, 1954). The game-theoretic research, 
however, reveals that an agent’s relative voting 
weight is not always a good measure of voting 
power, since it does not take into account the 
frequency with which an agent’s vote is pivotal 
(Banzhaf, 1965).  
 The concept of autonomy is closely related to 
the concepts of power, control and dependence 
(Brainov and Sandholm, 1999; Castelfranchi, 
2000). An agent is autonomous with respect to 
another agent, if it is beyond the influences of 
control and power of that agent. In other words, 
autonomy presupposes some independence or at 
least restricted dependence. Further exploration 
of the relationship between power, control, and 
autonomy is beyond the scope of this paper. 
 The paper is organized as follows. In the next 
section we analyze autonomy in the context of 
user-agent interaction. We propose a measure of 
autonomy that indicates the degree to which an 
agent is independent of its user. Section 3 
presents autonomy in the context of 
environmental factors and defines a 
corresponding autonomy measure. In Section 4, 
we analyze autonomy in social multiagent 
interaction and introduce quantitative measures 
of group autonomy. We explore the idea of 
finding an agent group with maximum overall 
autonomy and prove that this problem is NP-
complete.  
 

2.  A Measure of Autonomy in the 
Context of User-Agent Interaction 
 In this section we analyze autonomy with 
respect to an agent’s user. We consider the user 
as the main agent who has the right to monitor 
and control an agent’s performance. The user 
takes the responsibility for the agent’s 
performance and provides identification for the 
agent. Whenever the agent identifies itself, 
exchanges digital certificates, or carries out a 
transaction, it acts on behalf of the user. Under 
the right circumstances we assume the user can 
activate or deactivate the agent at her will. The 
user is typically a human and typically the owner 
of the agent, which takes legal responsibility for 
the agent. However, it is not necessary for the 
user to be a human agent. For example, a mobile 
agent can spawn a new agent and act as a user 
with respect to that agent. Since an agent acts on 
behalf of its user, user-agent interaction has 
greater priority for the agent than the interactions 
with other agents. Other interactions could be 
considered as instrumental with respect to the 
user-agent interaction. 
 An interesting aspect of autonomy is an 
agent’s ability to maintain a sense of self and 
identity i.e., an agent’s ability to keep its 
relationship with the user. An agent’s identity 
becomes important given the agent’s code, 
sensitive information (financial information, for 
example), access control rights, passwords, 
digital certificates can be accessed or altered by 
malicious third parties. 
 An interesting case arises when an agent 
simultaneously serves multiple users. By 
multiple users we mean users with different 
identities (the case when different users interact 
with the agent sharing the same identity is 
considered as a single user). If the users do not 
have predetermined priorities for the agent, the 
agent may exhibit autonomy by following the 
first-come first-served rule. The agent has to 
determine allocation of resources among 
competing users. In this case we assume that 
there is always a single administrator among the 
users with distinguished control permissions. 
 An agent may complete the task with or 
without the user’s supervision. In order to 
measure the agent’s autonomy with respect to its 
user, we have to know the extent to which the 
user’s supervision is helpful for the agent. We 
assume that the agent’s performance can be 
measured by some criterion of performance ν. 
The criterion ν may be thought of as a criterion 
of partial success, optimization function, index 



 
 

 

of satisfaction, utility function, etc. The user 
determines the criterion of performance ν. For 
the same task, different users may use different 
performance criteria. 
 With every agent i we can associate at least 
two performance measures1. The first measure νi

 
is agent i’s performance in the case where it acts 
autonomously, i.e., without the user’s 
supervision. The second measure νi

U is agent i’s 
performance with the user’s supervision. νi

U does 
not measure the performance of the user and the 
agent collectively. Intuitively, this is the agent’s 
own performance with the user’s supervision. 
However, we make no assumptions about 
improved performance and, in fact, performance 
degradation is quite possible. We follow the 
standard assumption of keeping all other things 
equal. That is, the effect of other agents or the 
environmental events is the same for both 
measures νi

U and νi. 

Definition 1. By a degree of individual 
autonomy Ai (autonomy with respect to the user) 

we mean the ratio i
U

i

ν
ν

. 

 The degree of individual autonomy indicates 
the extent to which an agent may act well 
independently of the user i.e., what part of an 
agent’s performance must be attributed only to 
the agent’s capabilities. In general, individual 
autonomy varies between -∞ and +∞. The degree 
of individual autonomy can be interpreted as the 
degree of independence from the user’s 
supervision. The combined user and agent 
performance is not necessarily the maximal 
performance. For example, if the user is not 
competent enough, the agent may be more 
efficient by acting autonomously. 
 Definition 1 characterizes autonomy as a 
relative concept. In order to evaluate an agent’s 
autonomy the user must have some criterion of 
acceptable behavior or some expectation about 
the agent’s behavior. Since different users may 
have different requirements for a task 
accomplishment, autonomy estimates may vary 
across different users. This means that different 
users could consider a pattern of behavior as 
either autonomous or non-autonomous. Suppose, 
for example, that an agent autonomously fulfills 
only 90% of a given task. A user may consider a 
90% accomplished task as a success, and may be 

                                                 
1 In the next section we will introduce a complete description 
of relative performance. 

willing to classify the agent’s performance as 
autonomous. At the same time, another user may 
consider the same performance as a failure, and 
may be reluctant to regard the agent as 
autonomous. 

3.  A Measure of Autonomy in the 
Context of Environment Interaction 
In this section we analyze an agent’s autonomy 
with respect to a set of environmental factors, 
which may contain uncertainty or unreliability. 
These environmental factors might be tools, 
instruments, electro-mechanical devices, or 
perishable resources. Let’s imagine the 
environmental factors have a known probability 
of reliability or uncertainty. In general, device 
reliabilities are represented as percentages over 
reliability ranges. For example, a light bulb 
might be 90% of the time 99% reliable and 10% 
of the time unreliable. This can be extended to 
several ranges, say 90% of the time 95% reliable 
(i.e., fairly reliable), 5% of the time 99% reliable 
(i.e., highly reliable), and %5 of the time 10% 
reliable (i.e., unreliable). The probabilities add 
up to 1.0 but the ranges are open. After access to 
the knowledge of these probabilities of 
reliability, the agent may or may not decide to 
use the environmental factors or make a decision 
about the environmental factors. Let’s imagine n 
ranges each with αi probabilities. The agent’s 
ability to act and decide is contrasted in each 
range of reliability of the environmental factors 
in light of the known probabilities. νi1

 is the 
agent i’s performance in the case where it acts 
without the use of a set of environmental factors 
knowing that they are the most reliable (i.e., the 
best). νi2

 is the agent i’s performance in the case 
where it acts without the use of a set of 
environmental factors knowing that it may have 
access to  second best environmental factors. 
Continue this until νin

 where the agent i’s 
performance in the case where it acts without the 
use of a set of environmental factors knowing 
that it is has the least reliable (i.e, the worst) 
environmental factors. νi1 is agent i’s 
performance with the use of the most reliable 
(i.e., the best) set of environmental factors. νi2 is 
agent i’s performance with the use of the second 
best reliable set of environmental factors. 
Continue this until νin where the agent i’s 
performance with the use of the least reliable 
(i.e., the worst) set of environmental factors. We 
make no assumptions about improved 



 
 

 

performance and in fact performance degradation 
is quite possible.  

Definition 2. By a degree of t autonomy with 
respect to an unreliable environmental element 
we mean the ratio ∑

r

ir
rνα  / ∑

r
irrνα . 

 The degree of environment autonomy 
indicates the extent to which an agent may act 
well independently of the environmental factors 
i.e., what part of an agent’s performance must be 
attributed only to the agent’s capabilities. In 
general, environment autonomy varies between -
∞ and +∞.  
 Environmental uncertainty implies that an 
agent has to decide between relying and not 
relying on the environmental factors. The choice 
has to be made in complete ignorance about the 
actual level of reliability. If an agent chooses to 
rely, its expected performance will be ∑

r

ir
rνα . 

If it does not rely, then the expected performance 
is ∑

r
irrνα . The ratio between the expected 

performances measures agent’s i autonomy with 
respect to an uncertain environment. 
 In Definition 2 we assume that an agent is 
free to decide whether to use the environmental 
factors. This implies that the agent has at least 
partial control over the environment. In many 
situations, however, an agent cannot go around 
the environment factors and have to use them. In 
this case we view an agent’s autonomy as the 
ability to choose the most favorable 
environmental factors. 

Definition 3. By a degree of autonomy with 
respect to an uncertain environmental element 
we mean the ratio ∑

r
irrνα  / 1iν . 

According to definition 3 the degree of 
autonomy is the ratio between the average (or 
expected) performance ∑

r
irrνα and the most 

successful performance νi1. Since the agent does 
not have control over the environmental factors, 
it cannot choose among them. If it had control, it 
would choose the most favorable ones. 
 Consider the following example. Both the 
user and the agent are uncertain about the current 
conditions in the environment. However, they 
share their levels of uncertainty as common 
knowledge. With probability 2/3 the conditions 
are favorable and with probability 1/3 they are 

inauspicious. The agent gets 6 if the conditions 
are favorable and 3 if they are inauspicious. The 
agent expected performance is 5 and the most 
desirable outcome is 6. Therefore, the agent’s 
degree of autonomy is 5/6. The situation is 
shown in Fig.1 
 
 
  

 

 

 
 
 

Fig.1: Individual autonomy in an uncertain 
environment. 

4.  Group Autonomy 
 In multiagent interaction where the agents’ 
actions interfere with one another, an agent may 
affect the autonomy of other agents both directly 
and indirectly. Indirect interaction usually occurs 
as a side effect of an agent’s behavior. An 
agent’s action may restrict or extend the 
autonomy of other agents by affecting the 
environmental conditions, the set of feasible 
goals, etc. In some cases the effects could be 
even more indirect. For example, an agent can 
affect another agent, which in turn may affect the 
autonomy of a third agent. This prompts for a 
quantitative measure of the degree of autonomy 
that takes into account various aspects of 
multiagent interaction: an agent in the context of 
a group, a group in the context of another group, 
and a group in the context of an agent. 
 We assume that agents may affect one 
another once they have been deployed in the 
environment. Therefore, it is not possible to 
devide the environment into different mutually 
independent groups of agents such that agents 
can affect one another if and only if they belong 
to the same group. This is a natural assumption, 
since we cannot preclude agents from interfering 
with one another (in a positive or negative way) 
once they have been brought together. Then, the 
question is which agents to deploy? In other 
words, which subset of agents achieves 
maximum autonomy, maximum efficiency or 
some combination of them? This question is 
different from the problem of finding the optimal 
coalition structure (Sandholm et al., 1999). A 
coalition environment implies that agents can be 
devided into relatively independent groups called 
coalitions. Each coalition has its own 
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performance measure (value of the coalition). 
The problem is to find a coalition partition that 
maximizes the sum of coalitions performances. 
In our case all agents perform the same task and 
there is no reason to separate them into different 
coalitions. That is, we assume that the grand 
coalition (involving all active agents) always 
forms. In other words, the user always deploys 
one coalition of agents. The problem is which 
coalition to deploy. 
 In order to evaluate how well an agent is 
doing in the company of other agents we need 
some indicators of relative performance. With 
every agent i we associate a vector of relative 
performance2 (νi, νi j, νi k, νi

jk). Here νi 
represents agent i’s performance acting alone 
i.e., by acting autonomously.  νi

j is agent i’s 
performance in the company of agent j. In this 
case agents i and j can interfere with each other 
either negatively or positively. νi

j could be 
greater or smaller than νi depending on the type 
of interference. For example, if agent i depends 
positively on agent j, then νi

j ≥νi. νi k is agent i’s 
performance in the presence of agent k. νi

jk 
measures agent i’s performance if it acts 
concurrently with agents j and k. In the case of 3 
agents the length of the vector of relative 
performance is 22. In general, the vector’s length 
is 2n-1, where n is the number of agents. 
 The elements of the relative performance 
vector should be interpreted as guaranteed 
performance values. For example, agent i can 
always get νi

j in the company of agent j. The 
actual performance may differ depending on 
agent j’s behavior, but it is always greater or 
equal to νi

j. In other words νi
j is the minimax 

performance that agent i can obtain in the 
company of agent j i.e., no matter how agent j 
behaves, agent i always gets at least νi

j. 
 The following definition introduces the 
concept of autonomy with respect to another 
agents.  
 
Definition 4. The degree of agent i’s autonomy 
with respect to agent j is 

A(i/j) i

i
j

ν

ν
=  

 The degree of agent i’s autonomy with 
respect to agent j is the ratio of agent i’s relative 

                                                 
2 For the sake of simplicity we constrain our attention to the 
case of three agents i, j and k. The results can easily be 
generalized to an environment with an arbitrary number of 
agents. 
 

performance to its individual performance. In 
other words, the degree of autonomy indicates 
how well agent i performs in the presence of 
agent j. It is 1 when agent j does not affect agent 
i. It could also be 0, if agent j completely blocks 
agent i. In general, it varies between -∞ and +∞. 
 Group performance is highly affected by 
interference among agents. The interference 
might either produce positive or negative 
performance. The following dilemma states the 
problem with the interference.  

Definition 5: Autonomy–efficiency dilemma 
arises when we compose a group of agents 
subject to the highest overall group performance 
with two classes of agents: (a) agents with low 
efficiency and high autonomy invariance agents 
(agents that are impervious to interference from 
other agents), and (b) agents with high efficiency 
and high autonomy variance (agents whose 
performance is highly susceptible to interference 
with other agents). 

 The following two-agent example illustrates 
the autonomy-efficiency dilemma. Suppose that 
we have two agents i and j whose vectors of 
relative performance are (5,1) and (2,2) 
respectively. These agents have different levels 
of individual autonomy. By acting alone agent i 
gets 5, while agent j gets 2. If the agents are 
brought together, then agent i gets 1 and agent j 
gets 2. Therefore, the autonomy of agent i with 
respect to agent j, A(i/j), is 1/5. This indicates 
that agent j affects negatively agent i by reducing 
agent i’s performance 5 times. On the other 
hand, agent j is autonomous with respect to 
agent i. Agent j’s performance does not depend 
on agent i and it is always 2. If we are looking 
for maximum invariance in autonomies, then we 
have to deploy only agent j. This, however, is 
not an efficient solution since agent j has low 
performance. Completely autonomous, agent j is 
not as efficient as agent i is. Agent j gets 2, while 
agent i achieves 5. Therefore, if we are looking 
for maximum efficiency, we have to deploy only 
agent i. The dilemma autonomy-efficiency arises 
from the fact that efficient agents may be highly 
susceptible to interference from other agents 
autonomous and vise versa; agents with 
autonomies unaffected by other agents may not 
be very efficient. To alleviate this dilemma, we 
suggest the following assumption that all agents 
have the same individual autonomy. The 
following definition gives this assumption a 
name. 



 
 

 

Definition 6: Equally-competent agents is the 
assumption that all agents have the same 
individual performance. That is, νi=ν, for all 
agents i. 

Under equally-competent agents assumption, 
each agent i by acting alone can achieve the 
same standard of performance ν. Since all agents 
are equally competent, the dichotomy of 
autonomy-efficiency disappears.  
 The following definition introduces the 
concept of autonomy with respect to a group of 
agents. In this paper by a group of agents we 
mean any set of agents that act concurrently. 

Definition 7. The degree of agent i’s autonomy 
with respect to a group of agents (j,k) is: 

A(i/jk)
ν

νi
jk=  

 The degree of autonomy with respect to a 
group measures to what extent the group can 
restrict or extend an agent’s autonomy. A degree 
of 1 means independence from the group. A 
degree larger than 1 signals for a synergetic 
interaction. Consider the following example. 
Suppose that agent i’s vector of relative 
performance is (4,6,4,8). That is, ν=4, νi

j=6, 
νi

k=4, and νi
jk=8. This implies that agent i 

depends positively on agent j (A(i/j) = 6/4 = 1.5). 
At the same time it is autonomous with respect 
to agent k (A(i/k) = 4/4 = 1), and depends 
positively on the group of agents j and k (A(i/kj) 
= 8/4 = 2). 
 In the next definition we introduce the 
concept of group autonomy. It measures how 
well agents are doing in a group. 

Definition 8. The degree of group autonomy of 
the group of agents (i,j) under the equally-
competent agents assumption is: 

 A(ij) 
ν

νν j
i

i
j +=  

 The degree of group autonomy compares 
individual performance with group performance 
and indicates whether it is worthwhile to put the 
agents together. If the agents are deployed in a 
group, the result is νi

j+νj
i. If only one agent 

(either one) is deployed, the performance is ν. 

Proposition 1. Group autonomy under the 
equally-competent agents assumption equals the 
sum of individual autonomies. That is, 

A(S) =∑
∈

−
Si

})i{S/i(A  

Where S is a set of agents, and S-{i} is the set of 
agents S excluding agent i. 

 
Proof. Follows immediately from Definitions 7 
and 8. 

 If we apply Proposition 1 to the group of 
agents (i,j,k), we will get 

A(ijk)=A(i/jk)+A(j/ki)+A(k/ij) 
 It is worth noting that Proposition 1 does not 
hold in general. The proposition depends on the 
equally-competent agents assumption, i.e, that all 
agents have the same level of individual 
autonomy. In general, group autonomy is not 
linear with respect to individual autonomy. 
 
Definition 9. The degree of autonomy of the 
group of agents i and k with respect to agent k 
under the equally-competent agents assumption 
is: 

  A(ij/k) j
i

i
j

j
ik

i
jk

νν

νν

+

+
=  

The numerator in Definition 5 measures the 
group performance of agents i and j in the 
company of agent k. The denominator is the 
autonomous performance of the group.  If we 
apply Proposition 1 to Definition 9, we will 
obtain the following proposition. 
 

Proposition 2. A(S/k)
)S(A

})k{}i{S/i(A
Si
∑
∈

+−
=  

where S-{i}+{k} is the group S excluding agent i 
and including agent k. 

 Proposition 2 says that the relative group 
autonomy (with respect to a third agent) depends 
positively on relative individual autonomies 
A(i/S-{i}+{k}) and negatively on the group 
autonomy A(S). 
 To illustrate all these notions, consider the 
following example. Let’s assume we can deploy 
up to three agents i, j and k with the following 
vectors of relative performance: 
• i’s relative performance (νi , νi

j, νi
k, νi

jk) =  
(4, 3, 4, 3) 

• j’s relative performance (νj, νj
i , νj

k, νj
ik) =  

(4, 4, 2, 1) 
• k’s relative performance (νk, νk

i, νk
j,νk

ij) =  
    (4,  4, 5, 5) 
 In this situation agent i is autonomous with 
respect to agent k, and depends negatively on 
agent j. Agent j is autonomous with respect to 
agent i, and depends negatively on agent k. 
Finally, agent k is autonomous with respect to 
agent j and depends positively on agent i. The 
dependence graph is depicted in Fig. 2. 



 
 

 

 
 
  
 

 

 

Fig. 2: Dependence graph. 

This example shows that since A(ik/j)= (νi
jk + 

νk
ij) / (νi

k + νk
i) = (3+5) / (4+4) = 1, the group of 

agents i and k is independent from agent j. 
Moreover, the group autonomy of agents i and k 
is A(ik) = A(i/k) + A(k/i) = 4/4 + 4/4 = 2.0. That 
is, by acting together they can increase their 
individual performance 2 times. It is easy to 
check that the maximum group autonomy A(ijk) 
= A(i/jk) + A(j/ik) + A(k/ij) = 3/4 + 1/4 + 5/4 = 
2.25 is achieved when all agents are brought 
together. This is not apparent from the initial 
statement of the problem, since agent j relates 
negatively to agents i and k. 
 The problem of finding the group with 
maximum autonomy is of significant importance 
for multiagent interaction. Whenever a group of 
agents are deployed for solving a particular task, 
we have to know which group of agents has the 
maximum autonomy. Along the same line of 
reasoning, if an agent decides to share or 
delegate its task to other agents, it has to find the 
group with the most desirable autonomy. A 
related issue is finding a group of agents with 
minimum variance in their autonomy. This is 
important for fault tolerance reasons since if 
agents were allowed to come and go at will, we 
would not want the group’s performance to be 
significantly affected.  We have looked at this 
problem previously [Hexmoor, 2000b]. 
However, this is a different problem than seeking 
agents with maximum autonomy. According to 
the following proposition the problem of finding 
the group with maximum autonomy is 
computationally hard. The problem is even more 
difficult if we have to account for the autonomy-
efficiency dilemma. 

Proposition 3. Finding a group with maximum 
autonomy is NP-complete. 

Proof. The decision problem can be defined as 
follows. Given relative performance vectors, for 
some real number N, does there exist a group of 
agents whose group autonomy is N? 
 The problem is in NP because verifying the 
degree of autonomy for a given group can be 
done in polynomial time. It involves summing 

the agents’ relative performance measures and 
dividing the result by the individual performance 
measure. 
 What remains to be shown is that the 
problem is NP-hard. We prove this by reducing 
the subset-sum problem to our problem. The 
subset-sum problem is the following: given a 
finite set of natural numbers S and a number K, 
is there a subset S’, S’⊆S, whose elements sum 
to K? This is a classic NP-complete problem 
(Cormen at al., 1990). 
 We use the following reduction. Let N=K. 
Let the S be the set of all agents. We associate 
every agent i with some natural number νi. Let 
the relative performance vector of agent i be (1, 
νi, νi, νi,….). That is, agent i’s individual 
autonomy is 1 and its relative performance is 
always νi. Now, the elements of a set of numbers 
S’ sum to K if and only if the set of agents S’ 
that has a group autonomy K. Thus, our problem 
is NP-hard. 

4.  Conclusions 
In this paper we introduced several quantitative 
measures of relative autonomy. The first measure 
defines individual autonomy with respect to 
user-agent interaction. The second measure 
relates to autonomy with respect to 
environmental factors. The third measure defines 
autonomy among groups and individuals. Our 
measures are domain independent and do not 
rely on specific interaction protocols. We also 
analyzed the question of finding a multiagent 
group with the maximum autonomy. We proved 
that this problem is NP-complete. Therefore, the 
problem of finding the optimal group or agent 
with whom to share a task (or to whom to 
delegate a task) is computationally hard in 
general. This suggests development of 
approximation algorithms for measuring and 
adjusting autonomy. Our future work includes 
looking into the relationship between maximum 
group autonomy and least variance in group 
autonomy. 
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