
Ivan Belik et al., International Journal of Information Systems and Computer Sciences, 2(5), September – October  2013, 29 - 37 

29 
 

 

ABSTRACT 
 
The analysis of social reasoning is at the core of 
understanding how to manage social networks. Since 
interpersonal relations are composed of multiple factors with 
different nature (i.e., structural and social factors), we explore 
their influence on the strategizing processes in social 
networks. The research is based on the consideration of social 
networks in terms of network games. Therefore, we formalize 
interpersonal relations using the methods of structural and 
social analysis combined with game theoretic approach. 
Specifically, we formalize social power of an agent and use it 
to quantify payoffs. Based on reasoning over values of power 
we show how individuals reach stability and Nash equilibrium 
with their peers in network games. 
 
Key words: agent’s power, social networks, network games 
 
1. INTRODUCTION 
 
The framework of the research is based on the problem of 
modeling the effects of network games on social reasoning.  
A social network is considered as an n-person nonzero sum 
game. Basically, each agent is characterized by structural 
metrics (i.e., centralities) and by social characteristics, such as 
measure of trust to other players. In fact, the research 
corresponds to the investigation of functional dependencies 
between the logical and mathematical apparatuses of three 
interconnected concepts described next. 

1.1 Structural analysis of social networks 
As was mentioned, structural analysis is a basic component of 
the investigation process. We use three fundamental structural 
measures in the given research: (a) degree-based centrality, 
(b) betweenness centrality and (c) closeness centrality [1]. All 
of these measures are the components of social power 
analysis. One of the goals for this research is to encapsulate 
structural centralities in a unified structural measure. This 
encapsulation is the first step in the formalization of social 
power. 

1.2 Analysis of social networks as the networks of trust 
We consider trust as a social property of interpersonal 
relations in networks. In fact, social networks are based on the 
exchange of trust between their members (i.e., agents). Trust 
is at the core of the decision making process of each agent in a 
social network [2]. The conception of trust can be used in 

 
 

combination with Bayesian networks. The approach is based 
on the method of Bayesian inference [3]. 

1.3 Formalization of social networks in terms of game 
theory 
Since game theoretic methodologies are well adapted for 
socio-economic modeling, the representation of a social 
network in a game form can provide beneficial effects [4]. 
Game theoretic methods can be used for the formalization of 
agents and their relations in social networks. Each agent can 
be considered as a player and agent’s benefits or losses can be 
represented as a player’s payoffs. In fact, each player attempts 
to maximize or minimize its payoff by strategizing [5]. Since 
each player chooses the extent of trust to another player, we 
consider a player’s choice of the level of trust as a strategy. 
Application of game theory in social networks optimizes the 
balance of interaction among individuals. For example, game 
theory provides a network with stability or equilibrium [5]. 
 
The main idea of the research is to investigate and 
mathematically formalize interdependencies among structural 
and social factors. Furthermore, the main challenge is to adapt 
this formalization for the game theoretic representation and 
analysis of gaining stability and Nash Equilibrium for the 
network game.  
 
2. BACKGROUND 
 
The analysis of social networks is basically related to their 
structural analysis. One of the first structural models based on 
the theory of directed graphs was suggested by [6]. It includes 
basic mathematical formalization and explanation of graph 
theoretic methodologies and their application in formalization 
of networks. Theory of directed graphs is a mathematical 
formalization of networks that can be applied to any types of 
networks represented by graphs (i.e., not only social 
networks). The theory of directed graphs is closely related to 
power networks [7]. According to [7], power is an agent’s 
ability to influence other agents and to resist an influence from 
other agents in the network. The computation of structural 
measures is considered as a basic step of the analysis of social 
networks. Harary’s research is concentrated on the 
investigation of social properties of agents, such as “power”, 
“dominance”, “dependence” and “status”.  Power networks 
are based not only on the structural analysis of networks, but 
also on the formalization of social interrelations among 
agents. This approach is widely used in the analysis of social 
systems, such as exchange networks [1]. 
 

Modeling the Effects of Network Games on Social Reasoning 

Ivan Belik1, Henry Hexmoor2 
1Norwegian School of Economics, Department of Business and Management Science,  

Norway, ivan.belik@nhh.no 
2Southern Illinois University Carbondale, Department of Computer Science, 

USA, hexmoor@cs.siu.edu 
 

ISSN 2319 – 7595 
Volume 2, No.5, September - October   2013 

International Journal of Information Systems and Computer Sciences 
Available Online at http://warse.org/pdfs/ijiscs01252013.pdf 

 



Ivan Belik et al., International Journal of Information Systems and Computer Sciences, 2(5), September – October  2013, 29 - 37 

30 
 

 

Exchange networks are socio-economic networks that can be 
characterized by five properties [1]. First, an exchange 
network is a set of agents and interrelations between them. 
Second, network resources are distributed between agents. 
Third, each agent makes a decision regarding the exchange 
process according to its individual interests. Fourth, each 
agent has a personal history of exchange within a network. 
Fifth and last, all interpersonal relations are encapsulated in a 
unified exchange network. According to [1], the formalization 
of exchange networks is based on two basic aspects: structural 
analysis and internal power of relations. Specifically, Cook et 
al. [1] used three basic measures for the structural analysis: (a) 
degree-based centrality, (b) closeness-based centrality, and 
(c) betweenness-based centrality. The analysis of internal 
power includes two factors: power and dependence. Power is 
considered as an agent’s potential to obtain the desired 
outcome from other agents in the network. Dependence 
implies the separability of opportunities and limitations of 
power distribution between different agents. It means that the 
relation between agent A and agent B is characterized by the 
dependence that is different from the dependence between 
agent A and agent C. According to [1], structural measures 
and internal power of relations are interdependent and 
influence each other. 
 
Social networks can be analyzed from the different angles. 
According to [8], efficiency is one of the most important 
properties of social networks. Reference [8] described the 
efficiency of social and economic networks in three basic 
categories. The first is that the notion of efficiency is the 
Pareto efficiency. Pareto efficiency (i.e., Pareto optimality) is 
a specific state of social network when an improvement of an 
agent’s condition is impossible without worsening the 
conditions of other agents. Pareto optimality is based on the 
idea that all profits from the operations of exchange within a 
network are exhausted. It means that if at least one agent starts 
to improve its condition, then it will change the state of 
another agent or agents in a negative way.  
 
According to [8], an agent is a member of the Pareto efficient 
network if there is no other network that can guarantee a better 
benefit than the current network. The second definition of 
efficiency is related to the maximization of an agent’s benefit 
[8]. It does not mean that each agent will maximize its payoff. 
The basic idea of such kind of efficiency is that the total 
amount of all payoffs should be maximized. The third 
conception of network efficiency is related to the availability 
of specific types of transactions for each agent.  It means that 
social network is efficient if the availability to realize the 
specific set of transactions at any time is guaranteed to each 
agent. This type of network efficiency implies that agents 
should not be limited in the realization of the specific set of 
rights. For example, if any democratic society is considered as 
efficient, then it should guarantee the freedom of choice and 
freedom of action for each member. The advantage of the 
given research is that it includes a deep analysis of the specific 
models of social networks. For example, Jackson (2003) 
considered the Connections Model [9] and the Co-Author 
Model [9]. 

Another approach regarding the network power and structural 
measures was done by [10]. The research is based on the 
abstract formalization of interdependencies between an 
agent’s power and centrality. Reference [10] did not specify 
which structural measures are better to be used for the 
structural analysis of social networks. It considered 
bargaining situations where agent’s power is its bargaining 
power. According to [10], it is preferable for an agent to keep 
relations with agents who have less bargaining power. If agent 
A keeps relations with more powerful agents, then it will have 
less influence in the bargaining process. This implies the 
decrease of the bargaining power for agent A. Reference [10] 
analyzed the problem of interrelations between network 
properties conceptually without specific computations. 
Mathematical formalization of interrelations between 
structural measures is abstracted away from the use of specific 
measures. 

 
3. METHODOLOGY 
 
A social network is a network that has a specific topology and 
social structure. The basic objects of social networks are 
agents (i.e., individuals, companies, and communities) that 
are represented by nodes and related by different kinds of 
social relations (i.e., friendship, love, trust, business, and 
knowledge). In fact, a social network can be represented as a 
graph as shown in Figure 1. Every social network can be 
analyzed by graph theoretic methodologies.  Social networks 
have different structural complexity, but in practice, they are 
considered as large-scale networks. This is due to the fact that 
they mimic the complexity of real-world social 
interdependencies. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A Prototypical Social Network with a 
Mixed Topology 

 
Quantification of social power is a multifactor analysis of the 
agent’s role in any kind of social and economic network. It is 
strongly related to the level of agent’s influence on each 
member of the network and on the integrity of the network. To 
put it more simply, social power captures a level of an agent’s 
importance and an agent’s opportunities within a social 
network.  
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Social power can be characterized by many measures. For 
example, Cook et al. [1] used structural centrality as a primary 
factor for social power. They used three basic measures of (a) 
degree-based measure, (b) betweenness measure, and (c) 
closeness-based measure in order to compute the distribution 
of power in exchange networks. Brandes&Pich [11] used two 
measures of (a) closeness and (b) betweenness for centrality 
estimation in large networks. Another important factor of 
social power is an agent’s internal power, which characterizes 
an agent’s resources (i.e., energy, knowledge, and trust). 
 
Social power structure is represented in Figure 2. Next, we 
describe the components in detail.  

 
Figure 2:Social Power Structure  

3.1. Structural Centrality 
Structural centrality is the most important concept in social 
power. It is based on the structural analysis of networks. 
Every social network can be represented as a graph. 
Formalization of structural centrality is closely related to the 
mathematical approach in graph theory. It is based on the 
computation of the shortest-path distances in the graphs, 
frequencies of nodes on the shortest paths, and connections of 
vertices to the low/high scoring nodes. Structural centrality is 
a measure of an agent’s importance in terms of the structural 
analysis of networks. 

3.1.1 Degree-based measure (degree centrality) 
Degree centrality (DC) of a vertex is a number of links 
directly connected to it. According to [12], DC of a vertex can 
be characterized as an indicator of its potentiality to interact 
with other vertices. 
Based on [9], DC computation for a vertex ݒ of a graph G(V, 
E) with n nodes can be realized by (1). 

(ݒ)ܥܦ =  
deg(ݒ)
݊ − 1  (1) 

wheredeg(ݒ) is a number of nodes directly connected to ݒ. 

3.1.2 Betweenness measure (betweenness centrality) 
Betweenness centrality (BC), as the measure of structural 
centrality, estimates how often the particular vertex can be 
visited looking through the shortest paths between all possible 
pairs of vertices [12].  
Equation (2) represents BC computation [13],[14]: 
 

BC(v) =
∑ σ(s, t|v)ୱஷ୴ஷ୲

σ(s, t)    (2) 

where: 

σ(s,t) is the number of the shortest paths among all paths from 
s to t; 
σ(s,t|v) is the number of the shortest paths starting at s, visiting 
v and ending in t. 

3.1.3 Closeness-based measure (closeness centrality) 
Closeness centrality (CC) measures how close the given 
vertex is to all other vertices of the graph on average. An agent 
with the highest closeness can be approached from elsewhere 
in the network faster on average than any other agent.  CC has 
an important practical use because it allows for determining 
the best position in the network from which other agents can 
be easily reached. 
 
CC is inversely related to the sum of the shortest distances 
from vertex ݒ  to all other nodes [15],[16]. Distance is 
considered as a number of edges in the shortest path between 
two vertices.  
 

(ݒ)ܥܥ =
1

∑ ,ݒ)ீ݀ ௧ఢ\௩(ݐ
 (3) 

 
where݀ீ(ݒ,  is the shortest distance between vertices ‘v’ and(ݐ
‘t’ in graph G. 
Equation (3) works well only with connected graphs. The 
modification of this formula was offered by [17]: 
 

(ݒ)ܥܥ =  2ିௗ(௩,௧)

௧∈\௩

 (4) 

 
Equation (4) is adapted to work with disconnected graphs. 

3.1.4 Eigenvector centrality 
Eigenvector centrality (EC) measures an agent’s significance 
with respect to other agents in the network. It characterizes 
quantitative and qualitative performance capabilities of agents 
[18]. In other words, more powerful agents can be more 
beneficial, and it is preferable to keep connections with them.  
 
According to [18], EC of the agent iis proportional to the 
average total EC score of its neighbors: 
 

ݔ =
1
ߣ
ܣ



ୀଵ

  (5)ݔ

Here: 
Aij is a network’s adjacency matrix. If vertex i is directly 
connected to vertex j, then Aij = 1; otherwise, Aij = 0; 
λ is a constant. 
 
Some EC values for nodes are a priori known. Since equation 
5 is recursive, the a priori values seed initial values used to 
compute values of EC for other agents.  
Alternatively,(5) can be represented in matrix form [18]: 

λx = A·x (6) 

Here: 
x is an eigenvector of centralities; 
λ is an eigenvalue of matrix A. 
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3.2. Internal Power (IP) 
 
IP is the second approach for social power quantification. It 
characterizes the internal agent’s resources. Compared to 
structural centralities, IP is not related to the structural 
features of the network, but it works with the internal 
characteristics of connections between agents. The 
specification of IP depends on the area of its application. For 
example, in terms of economics agent’s IP can be represented 
by capital, money, investments, and other tangible quantities.  
Current research focuses on the social foundation of agent’s 
IP. Accordingly, we characterize IP by three internal 
components: energy, knowledge and trust. 

3.2.1 Energy 
Energy is an abstraction of social and economic resources. 
One of the interpretations of energy as a social category is 
given by [19]. In the context of social analysis, energy can be 
represented by an agent’s ambitions, willpower, and social 
activities. In terms of economic analysis, energy can be 
represented by money, time, and propensity for financial risk.  
Both kinds of energy are limited. For example, an agent 
cannot work more than 24 hours per day or spend more money 
than it has. An aggregated agent’s energy can be represented 
by any value in the range [0, 1]. 

3.2.2 Knowledge 
Knowledge is what is known by an agent regarding its 
position in the network. It includes the information regarding 
the states of other agents, connections, and network 
characteristics in general. In the context of social power, 
knowledge can be characterized as the level of an agent’s 
information awareness about the network. The deep analysis 
of knowledge as a social category is done by [20]. 

3.2.3 Trust 
Trust is a basic characteristic of social networks. If agent A 
does not trust agent B, then agent B will not get any benefit 
from agent A, which includes energy and knowledge.We 
consider a trust network as a directed graph, where trust can 
take on any value from a range [0, 1]. Therefore, a 
mathematical apparatus applied for directed graphs can also 
be used in trust networks. One of the interesting 
interpretations of trust is given by [2], where trust is 
considered as an abstract and personal category of 
interpersonal relations. 
 
It is important to say that social power has already become 
one of the most important parameters in the analysis of social 
and economic networks.  It is not just an abstract and 
uncertain philosophic term, but it is a deeply formalized 
concept of mathematical formalization in social and economic 
networks. 
 
3.3 Network Games 
 
Network games are a combined approach that is based on the 
structural analysis of socio-economic networks and game 
theory. Players and their interrelations form a network that 

can be represented as a graph. Network games are based on 
the extended analysis of players’ interdependencies. Such 
approach implies the symbiosis of graph theory and game 
theory methodologies for the purpose of more adequate 
analysis of socio-economic relations. According to [4], 
network game investigations are based on four basic factors: 
player’s degree d, player’s probabilistic property σ(d), utility 
function ud, and agent’s strategy xi. 
 
A player’s degree is a structural measure. It corresponds to 
interdependencies between agents in terms of graph theory. A 
player’s degree is an estimated number of an agent’s relations 
with other agents. In fact, it corresponds to the number of 
directly connected nodes of graph, where each node is a 
player. An agent’s property σ(d) is a probabilistic 
characteristic of an agent i with degree d. It is a probability 
that a neighbor of agent iwill choose a specific strategy [4]. 
The values of σ(d) are in the range [0, 1]. According to [4], 
agent’s utility udis its payoff based on the current degree d, 
probabilistic property σ(d) and the chosen strategy xi. 
Reference [4] considers network games in terms of 
manipulations with these three basic factors (i.e., d,ud,and 
σ(d)) for the purposes of network stabilization and Nash 
equilibrium gaining. 
 
Another network games analysis is done by [21]. It is based on 
the idea that a player’s payoff depends on the structural state 
of its neighbors. Reference [21] also considered network 
games in terms of combined methodologies of structural 
analysis and game theory. Reference [21] gave a 
mathematical interpretation of such kinds of interrelated 
methodologies. They consider network games with 
incomplete information about network structure. The 
formalization of agents’ payoffs is based on the correlated 
analysis of three basic aspects: (a) structural centralities, (b) 
information incompleteness, and (c) network externalities. 
 
4. APPROACH 

4.1 Formalization of Social Power 
Measures that characterize social networks are often 
motivated independently. For example, centrality and density 
are heterogeneous measures of a social network and cannot be 
easily combined since they quantify measures of interest for 
different uses of social networks. 
 
Structural network analysis attempts to understand the 
internode connectedness as in graph theory methodologies. 
The analysis of different types of structural measures in terms 
of social networks was done by [22]. Graph based network 
methodologies cannot be applied for analysis of social factors 
in social network processing because social networks possess 
social content that cannot be reduced to measurement by 
structure. In contrast to structural analysis, social analysis has 
a different foundation and cannot be quantified by topological 
analysis.  

4.2 Structural Centrality and Trust 
Three measures of structural centrality are taken into 
consideration: (a) degree-based measure, (b) betweenness 
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measure, and (c) closeness-based measure. To accomplish 
interdependency, these three measures are unified in one 
structural parameter that is called structural centrality (SC). A 
problem is that each measure takes its values from different 
numerical intervals. The process of unification is based on the 
idea that SC should take its value from a unified interval, say 
[0, 1].  
 
The method of unification for structural parameters is based 
on the knowledge about the minimum and maximum values 
of each parameter at the particular moment (i.e., snapshot of 
the network). Each agent is characterized by values of three 
structural measures mentioned, and each structural measure 
may have any value greater than or equal to zero at a particular 
moment (i.e., at a snapshot) of the network game.  The agent 
with the minimum value of the particular structural measure 
will set the lowest value of this structural measure 
corresponding to “0” value equivalent in the range [0, 1]. 
Accordingly, the agent with the maximum value of the 
considered structural measure will set the highest value “1” in 
the range[0, 1]. For example, let’s consider the betweenness 
centrality (i.e., measure) in the trivial network consisting of 
three agents shown in Figure 3. Numbers inside nodes 
represent centrality values.  

 
 
 
 
 
 
 
 
Figure 3: A Trivial Network Example with Betweenness 

Centrality Values 
 
According to Figure 3, agent 1 has a maximum betweenness 
centrality value of 15. This means that value of 15 will be 
mapped to 1 in the range [0, 1]. Agent 3 has a minimum 
betweenness centrality value of 2. Value of 2 will be mapped 
to 0 in the range [0, 1].  
Having upper- and lower- bounds of the betweenness 
centrality, all other intermediate values can be computed in 
the interval [0, 1]. Particularly, agent 2 will have betweenness 
centrality value interpolated to 0.69.  
The methodology we described above is applied for all three 
measures taken into consideration. The unified value of social 
centrality (SC) is determined by (7). 
 

ܥܵ =  DCା  ା  
ଷ

 (7) 
 
where ܵ0] ߳ ܥ, 1]. 
Equation 7 is founded on the idea that all structural measures 
contribute equally to the general SC. Our formulation 
specifies a linear composition between them. A linear 
composition is stipulated by structurally equal importance of 
degree-based, betweenness and closeness-based measures for 
an agent’s structural centrality. Structural analysis is at the 
core of each centrality measure, but the difference is that each 
measure is based on the consideration of network structure 

from a specific angle. Each of these measures is a quantitative 
characteristic of an agent’s structural centrality. An arithmetic 
mean computation (i.e., (7)) is a method to avoid the 
prioritizing of their contributions to a general agent’s 
structural centrality. In fact, the consideration of non-linear 
composition implies different levels of structural measures’ 
importance. In this case, each structural measure should have 
some specific characteristics (excepting structural) to be 
considered as a more or less important measure. A good 
example is an eigenvector centrality (5) that is not only 
quantitative, but also qualitative structural measure. Equation 
7 cannot have a linear composition if it includes an 
eigenvector centrality. Nevertheless, an eigenvector centrality 
is not used in (7). 
 
Once we consider a network that represents social nature of 
interactions, we can interpret such a network to be a network 
of trust [3], [23]-[25]. Basically, agents can measure trust and 
represent values in the range [0, 1]. An agent lacks trust at all 
(i.e., the fewest trust) or has an abundant trust (i.e., the most 
trust) to another agent if the values of trust are equal to 0 and 1 
respectively.  

4.3. Formalization of Social Power 
Having unified values of structural measures and trust, it is 
necessary to amalgamate them into a single function:  
 

Y=ƒ (SC, T)    (8) 
 
One of the basic analyses of interdependencies between 
structural centrality and trust was done by [26]. Reference 
[26] investigated the interdependencies between two 
components of social networks: structural measures and trust. 
The functional dependencies were formalized for the relations 
between buyers and sellers. The conception of(8) is another 
point of view for the interpretation among social network 
relations. It is not limited by the consideration of specific 
socio-economic interactions, because it is based on the 
conceptual analysis of social relations.  
 
The proposed idea in this research is to consider equation 8 as 
the combined social power of agent A (see Figure 4). 
According to Figure 4, social power of agent A (i.e., 
computed using(8)) depends not only on the current structural 
centrality of agent A and its trust (T) with respect to other 
agents (namely B and C in Figure 4), but also on the current 
structural centralities of the other agents and their trust on 
agent A.  

 
Figure 4: A Trivial Example of Network with Trust and 

Social Centrality Relations 
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In fact, the combination of T and SC can be termed as an 
agent’s social centrality or social power (SP). Equation 9 
elaborates (8). 
 

ܵ ܲ =
∑ ்,ಲ
ಿషభ
సభ
ேିଵ

× ܥܵ +
∑ (்ಲ,×ௌି்,ಲ×ௌಲ)ಿషభ
సభ

ேିଵ
(9) 

 
Here, 
N is a number of agents; 
Ti,Ais a trust from agent i to agent A; 
TA,i is a trust from agent A to agent i; 
SCA is a structural centrality of agent A; 
SCi is a structural centrality of agent i.  
 
Equation 9 consists of two main components. 
 

1. ൬
∑ ்,ಲ
ಿషభ
సభ
ேିଵ

×   .൰ܥܵ
This encapsulates the basic interdependency between SC for 
agent A and T to agent A from all other agents. Agent A may 
have the highest SC in the network. However, if no one trusts 
it, A will not experience any social power. 

൬
∑ ்,ಲಿషభ
సభ
ேିଵ

൰computes an average T from all agents at the 

network toward agent A.  
 

2. ൬
∑ (ఽ,×ୗେି,ఽ×ୗେఽ)ొషభ
సభ

ିଵ
൰.  

Social power of agent A can be consistent with the influences 
from all other agents. I.e., current structural centrality of the 
other agents and their levels of trust to agent A. This influence 
makes social power more sensitive to feedback from other 
agents and their current conditions compared with the current 
individual outcomes from agent A to each agent. This 
component can take on a positive or negative value. 

 
Social power is the formalization of functional 
interdependencies between attributes that have different 
nature (i.e., structural vs. social). For example, if agent A is in 
the same structural condition (i.e., SP=1) as all other agents 
and its trust to other agents is at maximum level, then agent A 
possess the biggest social power in the network even if all 
other agents do not trust agent A at all (i.e., ∑ ܶ, = 0ேିଵ

ୀଵ ).  
 
It is important to notice that the given model of social power 
can be augmented by the extended considerations of social 
factors. If any other social relations (e.g., knowledge, 
friendship, and love) can be measured numerically, unified to 
the range [0,1] and represented by functional 
interdependency, defined by Z=(social factor 1,…, social 
factor N), then T  in (11) can be replaced by Z. It means that T 
in (9) can be replaced by a multi-factor model of encapsulated 
social factors like it is done by the implementation of SC 
multi-factor model in (7) for structural factors. 
The main limitation here is that many social factors cannot be 
easily measured numerically. This replacement possibility 
shows that the proposed SP-function is flexible for 
multi-factor analysis of social networks and can be operated 
with different social and structural parameters without radical 
change.  

 
5. GAME THEORETIC APPROACH 
 
The analysis of social network games in terms of game theory 
is based on the idea of finding stability or equilibrium for 
combinations of players’ strategies. In terms of given 
research, stability is considered as the state of network games 
when the specific combination of player’s strategies can 
ensure a certain condition of the network game. Equilibrium is 
considered as Nash equilibrium.  
 
The proposed work is based on the idea to consider n-person 
nonzero sum games. These games can be divided into two 
types. The first type is the games with deterministic payoffs, 
where agent’s payoff is a value of social power, and strategy is 
a value of trust. The second type is games with probabilistic 
payoffs, where agent’s payoff is a probability to get a specific 
value of social power and strategy is a value trust. 

5.1 Network Games with Deterministic Payoffs 
Two basic concepts of the game that have to be determined 
are agents’ strategies (q={q1, q2, … , qn}) and agents’ payoffs 
(ui(q), where i=1, …, N). 
In the context of the given research, trust is considered as a 
strategy. A player’s strategy construction is a choice process 
of how to trust other agents. Each agent can choose the level 
of trust from the range [0, 1]. The given freedom of social 
choice (i.e., freedom to choose the level of trust) is at the core 
of strategizing. 
 
An agent’s payoff is its social power, and it can be represented 
by (10): 

uA = ƒ (qA,i, … , qA,N-1, qi,A, … , q N-1, A),            (10) 
 

wherei is the number of agents that are different from agent A 
(i.e., i = 1, …, N-1). 
 
We consider uAas a function of trusts from agent A to all other 
agents and from all other agents to agent A.  
An agent’s payoff is equal to value of its SP specified in (9): 

uA = SPA   (11) 
 

The fact that social power is an equation of two variables (i.e., 
T and SC) is not an issue in the context of the proposed 
formalization of social network games, because a player can 
choose only the level of trust during the game, but not the 
value of structural centrality. Structural centrality is a 
structural measure and it does not depend on the player’s 
strategizing. A player cannot choose its structural centrality. 
Since it is a network structural characteristic it becomes a 
parameter in the payoff function and its value can vary from 
one game to another. A player can manipulate only by its 
social choice (i.e., level of trust), and this manipulation affects 
social power and structural centrality because of their 
functional interdependency (i.e., SP=ƒ(T,SC)). 
 
According to [5], Nash equilibrium ( ∗ଶݍ,∗ଵݍ , … , ∗ݍ ) for 
n-person nonzero sum games can be gained if three conditions 
are simultaneously satisfied: 
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Figure 5: The Conditions for Nash Equilibrium Gaining 
 
The calculus methodology in Figure 5 can be applied for the 
social network games with deterministic payoffs.  We 
consider the game with two players for the simplification of 
the Nash equilibrium computation. The methodology of Nash 
equilibrium gaining is scalable, and the decision for two 
players can be applied for n-players.  
There is a two-person non-zero sum game, where the social 
power specified in (9) is applied for the payoff’s computation 
and Nash equilibrium gaining. 

 
Player 1 

 

Player 2 
u1(q1, q2)=q2×SC1+( q1×SC2 – 
q2×SC1) 

u2(q1, q2) = q1×SC2+( q2×SC1 – 
q1×SC2) 

Verification of (a)-condition: Verification of (a)-condition: 

డ௨భ
డభ

= 0 +SC2 – 0; డ௨మ
డమ

= 0 +SC1 – 0; 

According to (a) and 
(b)-condition, the solution cannot 
be approached by the method of 
derivation. 
SC2 = 0 (if (a)-condition is 
applied) 

According to (a) and (b)-condition, 
the solution cannot be approached 
by the method of derivation. 
SC1 = 0 (if (a)-condition is applied) 

Verification of (c)-condition: Verification of (c)-condition: 
డమ௨భ
డమభ

= 0 ⇒ (c)-condition is not 
satisfied. 

డమ௨మ
డమమ

= 0 ⇒ (c)-condition is not 
satisfied. 

 
Figure 6: Nash Equilibrium Computations for a Two-Person 

Non-Zero Sum Game with Deterministic Payoffs 
 
According to Figure 6, n-person non-zero sum games based 
on (9) can gain the state of stability. A network game stands in 
a stable condition if all players have the same level of trust to 
each other: 

q1=q2=…=qn,                                    (12) 
where “n” is a number of players. 
 
The desired aim of the research to gain the stability of social 
network games is reached. 
Nevertheless, the conditions of the method of derivation 
(Figure 5) are not satisfied. It means that Nash equilibrium is 
not gained. However, according to [5], the conditions in 
Figure 5 are sufficient, but, in practice, they are not necessary. 
Nash equilibrium can be gained even if the conditions in 
Figure 5 are not satisfied. Therefore, Nash equilibrium can 
exist and can be gained by a different approach that is based 
on n-person non-zero sum games with probabilistic payoffs.  

 

5.2 Network Games with Probabilistic Payoffs 
As already mentioned, network games can be formalized in 
terms of probability to get a desired agent’s payoff. The 
formalization of two-person non-zero sum game is 
represented in (13). 

u (qଵ, qଶ) = ቐ
ܵ) ܾݎܲ ଵܲ > ܵ ଶܲ)
ܵ) ܾݎܲ ଵܲ = ܵ ଶܲ)
ܵ) ܾݎܲ ଵܲ < ܵ ଶܲ)

                          (13)              

 
To gain the Nash equilibrium for the game formalized by (13), 
it is necessary to consider all conditions of trust between 
players and the differences in structural centralities. The 
consideration of these two factors is required because social 
power is a function of trust and structural centrality (SP =ƒ (T, 
SC)).   
The summarized results of computations for all possible states 
of strategies (i.e., level of trust) and structural centralities are 
represented in Table 1. 
 
Table 1:Combination of Strategies and SCs and Their Effect 
on SP 
1. IF q1 > q2   
1.1  AND  SC1=SC2 THEN SP1>SP2 
1.2  AND  SC1<SC2 THEN SP1>SP2 
1.3  AND  SC1>SC2 THEN SP1>SP2 

    
Thus, IF q1>q2 THEN SP1>SP2  

 IF q1>q2 THEN Prob (SP1>SP2) = 1 
    

2. IF q1 < q2   
2.1  ANDSC1=SC2 THEN SP1<SP2 
2.2  AND  SC1<SC2 THEN SP1<SP2 
2.3  AND  SC1>SC2 THEN SP1<SP2 

    
Thus, IF q1<q2 THEN SP1<SP2  

 IF q1<q2 THEN Prob (SP1<SP2) = 1 
    

3. IF q1 = q2   
3.1  AND  SC1=SC2 THEN SP1= SP2 
3.2  AND  SC1<SC2 THEN SP1= SP2 
3.3  AND  SC1>SC2 THEN SP1= SP2 

    
Thus, IF q1= q2 THEN SP1= SP2  

 IF q1= q2 THEN Prob (SP1= SP2) = 1 
 
For the purpose of Nash equilibrium gaining, it is necessary to 
consider a probability of strategy to be chosen by a player. For 
the given two-person probabilistic game, γi is a probability 
that the chosen level of trust from player i to another player is 
greater than the level of trust from another player to the 
current player i (i.e., Prob(q1> q2) or Prob(q1< q2)). According 
to the results of computations represented in Table 1, the Nash 
equilibrium for this game is (γଵ∗ ,γଶ∗).  
 

 (γଵ∗ ,γଶ∗ ) = (ଵ
ଷ

, ଵ
ଷ
)                                   (14)                     

 
Nash equilibrium can also be gained if δi is a probability that 
the chosen level of trust from player i to another agent is 
greater or equal to the level of trust from another player to the 
current player i (i.e., Prob(q1 ≥ q2) or Prob(q1 ≤ q2)). 
According to the results of computations represented in Table 
1, the Nash equilibrium for this game is (δଵ∗ ,δଶ∗).  
 



Ivan Belik et al., International Journal of Information Systems and Computer Sciences, 2(5), September – October  2013, 29 - 37 

36 
 

 

(δଵ∗ ,δଶ∗) = (ଵ
ଶ

, ଵ
ଶ
)                                   (15) 

 
Nash equilibrium for social network games with probabilistic 
payoffs is gained. Also, it is important to notice that structural 
changes of such kinds of games, based on the SP-function, do 
not affect Nash equilibrium. For instance, q1>q2 can guarantee 
that SP1>SP2 even if SC1< SC2. This fact is a proof that Nash 
equilibrium is gained for dynamic social network games. 

 
6. CONCLUSIONS 
 
The analysis of social systems is based on the 
interdisciplinary approach. It includes not only the social 
analysis of interpersonal relations, but also game theoretic and 
graph theoretic methods and concepts. The major aim of the 
given research was to make a contribution to the 
understanding of mechanisms of social reasoning using 
network games as a basic tool. The research begins with a 
theoretic review of methods and concepts of structural 
analysis of social networks and game theory, which are 
required for understanding theoretical methods of the 
research. The analysis of the related works is done for the 
understanding of the approaches that contributed expressly or 
by implication to the modeling of the mechanisms of social 
reasoning.  
 
The first idea of the research was to combine structural and 
social properties of agents in a single parameter (i.e., social 
power). It was approached by the unification of three basic 
structural measures of social networks, and trust as the basic 
measure of interpersonal exchange. In fact, the formalization 
of social power as a multi-factor model of an agent’s 
importance, and authority in a social network gave an 
opportunity to manipulate social networks using game 
theoretic methods. Specifically, we considered dynamic 
social networks as the sequences of network games, where 
players’ payoffs are represented by the values of social power, 
and strategies are represented by the levels of trust to other 
agents. The formalization of network games based on the 
invented equation of social power made it possible to 
approach the stability of network games with deterministic 
payoffs. Furthermore, we approached Nash equilibrium of 
network games with probabilistic payoffs. It implies the 
practical importance of the research, because the given 
theoretical approach can be applied in the monitoring and 
control of real socio-economic systems.  
 
The future work is related to the improvement of the equation 
of social power. Since social power is a multi-factor model of 
an agent’s capabilities within a network, its current 
components can be modified and new components can be 
added. Specifically, we considered trust as a basic social 
factor of interpersonal relations. However, the other factors, 
such as knowledge, friendship, and love, can be added to the 
model if they can be measured. Another improvement may be 
done in the analysis of network games with deterministic 
payoffs. We approached the stability of this kind of games, 
but another challenge is to gain Nash equilibrium.  
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