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Abstract
 

Argumentation provides a powerful means to achieve complex, non-demonstrative rea

soning within a multi-agent system. However, the advantages gained by this form of 

automated reasoning are not without consequence. When arguments are constructed out 

of formulae in an underlying formal logical language, decisions such as argument evalu

ation involve deciding the consistency or logical entailment of the component formulae 

of arguments. Given that these decisions are generally intractable, and further that an 

agent’s decisions need to be resource bounded, malicious exploitation is possible. By 

strategically expanding the syntactic content of its arguments, a malicious agent may 

exploit the resource bounds of its opponent’s decision procedures, effectively manipulat

ing their outcome towards its own ends. This type of exploitation presents an important 

vulnerability in the security of open multi-agent systems employing argumentation as 

a means of communicative interaction. It is therefore necessary to investigate and de

velop strategies for detecting and defending against this type of malicious exploitation. 

However, such defense strategies will necessarily be insufficient; it would be impossible 

to construct a perfect defense against malicious resource exhaustion strategies in open 

multi-agent argumentation systems. Nonetheless, research into efficient means of mini

mizing the risk of such exploitation is warranted, as is continued investigation into further 

methods of malicious agent strategies in practical argumentation systems. 
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Chapter 1 

Introduction 

Reasoning is a broad and pervasive topic throughout academia. In the sciences, both 

evidence-based reasoning and theoretical methods of reasoning form the cornerstone of 

scientific progress; in economics, statistical reasoning and game theoretic reasoning allow 

these complex systems to be understood and manipulated; in law, the judicial process is 

understood and applied through a process of reasoning. These are but a few examples, 

yet it should take no more than a moment’s reflection to recognize myriad others, not 

only in academia but in business, politics, religion and the activities of our everyday lives. 

Reasoning is among the most powerful and essential cognitive instruments available to us; 

through it, understanding, explanation, investigation and interaction may be achieved, 

both formally and informally. 

Formal applications of reasoning have traditionally focused heavily on demonstrative 

methods; that is to say, proof. Absolute and irrefutable truth is the consequence of proof, 

and as such, proof is highly desirable. In the metaphysical constructs of mathematics 

and formal logics, proof is both available and necessary, as these systems are rooted 

in absolutes. Those systems residing outside metaphysics, the informal and natural 

systems, do not so readily admit such absolutism. Our interpretation of these systems, 

and the formalisms we construct to reason over and understand these systems, must 

therefore respect this lack of absolutism. The phenomenal necessitates an insufficiency 

of interpretation. 

Despite our inability to employ demonstrative proof within this context, reasoning 

is nonetheless possible, as evidenced by a vast history of non-demonstrative reasoning 

encompassing millennia of scientific inquiry and achievement. In the absence of proof 
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and the absolutism of truth, scientific progress has relied on a method of reasoning 

commonly held to be in the realm of disputes that are decidedly non-scientific: argumen

tation. The study of argumentation has a rich and expansive history in the philosophical 

traditions, although it has often been viewed narrowly as the application of mere rhetoric 

and sophistry. However, argumentation forms the cornerstone of non-demonstrative rea

soning; at its core, the study of argumentation is the investigation into the interaction 

between unprovables and the nature of justification. 

As with argumentation, the study of artificial intelligence has been rife with mis

understanding, both in its popularization and occasionally even by its practitioners. In 

essence, artificial intelligence is concerned with applying computational resources towards 

exceedingly difficult problems in order to produce reasonable solutions within a reason

able amount of time. As such, the field is more than familiar with insufficiency and the 

lack of absolutes; achieving a “perfect” solution is generally infeasible for these problems, 

and often impossible. Whether the task is to dynamically route international air traffic, 

automatically test a complex software suite or convincingly interact with human beings, 

the information upon which the system must make its decisions is generally imperfect, 

incomplete or inconsistent. With the addition of realistic time constraints, perfection is 

simply unreasonable, regardless of the computing power employed. 

Formal methods of reasoning have therefore naturally found application in the field 

of artificial intelligence. Traditionally, the focus has been on demonstrative forms of 

reasoning; constructing a proof of a particular logical or mathematical theorem is no 

trivial matter, and the automation of this task is of immense value to anyone requiring 

such a proof. Given this capacity for reasoning over a knowledge base, automated theorem 

provers have since been adapted as a means of manipulating knowledge in agent based 

systems. In such systems, agents often gather knowledge from their environment with the 

aim of using this knowledge to support decision making procedures. However, the strict 
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demonstrative nature of these proof-based reasoning mechanisms is often insufficient 

given the incomplete, imperfect and often inconsistent knowledge an agent gathers from 

its environment. 

To handle this insufficiency, attention has now been turned to automating non-

demonstrative forms of reasoning. Defeasible and non-monotonic logics were developed to 

formalize exception-based reasoning, yet the most fruitful of these investigations into au

tomating non-demonstrative reasoning is based on the most pervasive of its natural forms: 

argumentation. By drawing inspiration from how humans deal with incomplete, imper

fect and inconsistent knowledge, a powerful means of automating non-demonstrative 

reasoning was born. The core of argumentation is also the principle distinction between 

it and other forms of automated reasoning, non-demonstrative or otherwise; rather than 

constructing a straight line of proof from evidence (or premises) to conclusions, argu

mentation focuses on the dialectic interaction between reasons for and against particular 

conclusions. By modeling the process of justification as a dialogue between one side for 

and another against a particular claim, automated argumentation provides not only a 

powerful means of automating non-demonstrative reasoning, but also one which can be 

understood naturally and efficiently by humans interacting with these systems. 

With the rapid expansion and adoption of the Internet in the past few decades, the 

field of agent-based artificial intelligence has become increasingly interested in employ

ing agents as a means of automating interactions between systems in this vast network. 

Rather than being simple pieces of software executing mundane tasks according to rigid 

protocols, such as e-mail or web browsers, the goal is to have these agents performing 

complex tasks based on sophisticated reasoning mechanisms, such as automated commer

cial negotiations or information search and retrieval. Given the nature of the information 

dealt with by agents in this on-line environment, automated argumentation is being in

vestigated as a means of communicative interactions between agents engaged in activities 
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both across the Internet and in other “open” multi-agent systems. 

However, the additional value gained by agents employing automated argumentation 

in open multi-agent systems is not without consequences. While the Internet brought 

with it the value of a rich means of high-speed, long-distance communication, so too 

did it bring the potential for malicious abuse of this communication medium. Digital 

virii and other forms of malicious software are now able to propagate with increasing 

efficiency, and attempts to protect against these threats has resulted in a protracted 

conflict between the two sides. For each new defense against virii and malware, new 

attacks are developed for which this defense is inadequate. As automated argumentation 

is adopted as a means of interaction in open multi-agent systems such as the Internet, a 

similar situation will arise between agents employing forms of malicious argumentation 

and the defenses developed to counteract them. 

The purpose of this thesis is to introduce the concept of malicious argumentation 

in the context of open multi-agent argumentation systems. When arguments are con

structed out of formulae in an underlying formal logical language, many decisions in the 

argumentation system are based on deciding deduction or consistency in this logical lan

guage. For interesting logics, these decisions are generally intractable; often they cannot 

be decided within a reasonable time limit. Given that actions in multi-agent systems need 

to be resource bounded, the decisions of the argumentation system are also restricted by 

resource limitations. However, many of the decisions performed in an argumentation 

system are based on external data: the arguments presented by an agent’s opponent. 

Therefore, a malicious agent may construct its arguments in such a way as to exhaust 

the resource bounds of its opponent’s decision procedures, thereby altering the outcome 

of these decisions. This may allow a malicious agent to manipulate the outcome of the 

process of justification towards its own ends, which presents an important vulnerability 

in the security of open multi-agent argumentation systems.
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The goal of this thesis is to provide an overview of the problem presented by malicious 

argumentation in open multi-agent systems, both by describing the concept from a high-

level perspective as well as providing a practical demonstration of a malicious resource 

exhaustion strategy. Further, it is to provide a convincing account of the necessity of 

implementing a defense strategy to counter-act malicious argumentation, and conversely 

the necessary inadequacy of any such defense strategy. This thesis is organized into four 

primary chapters: Chapter 2 provides an introduction to the field of automated argu

mentation, Chapter 3 provides background information on automated theorem proving, 

Chapter 4 investigates the concept of malicious argumentation and provides a concrete 

example of a resource exhaustion strategy, and finally Chapter 5 provides a high-level 

discussion of defense strategies against malicious argumentation. 
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Chapter 2 

Argumentation 

This chapter is intended to provide the reader with some background knowledge in the 

field of automated argumentation. While not an exhaustive examination of the subject, 

this should provide sufficient knowledge for understanding the topic of this thesis. The 

chapter is organized as follows: in Section 2.1, the classifications of demonstrative and 

non-demonstrative reasoning are described, providing motivation for the basic goals and 

mechanisms of argumentation. In Section 2.2, abstract argumentation is introduced, 

which provides the general model for a system of arguments and relations between them. 

Further, this section examines the principles of argument evaluation, whereby the jus

tification status of an argument is determined in relation to the other arguments in 

the abstract argumentation framework. Section 2.3 then looks at arguments as struc

tures built out of formulae in an underlying formal logical language, rather than simple 

abstract entities. Included in this section is a definition of attack relation semantics, 

which provides a mechanism by which attack relations between structured arguments 

may be decided. Section 2.4 then examines argumentation as a means of interaction 

between agents in a multi-agent system, including the use of dialogue games to control 

the interaction, the relation between dialogue game rules and the semantics of argument 

evaluation described earlier, and the particular challenges presented by argumentation 

in open multi-agent systems. Finally, Section 2.5 describes the necessity of resource lim

itations in practical implementations of argumentation systems, which will form a focal 

point central to the research into malicious argumentation presented in this thesis. 
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2.1 Proof and Argument 

Argumentation is a method of reasoning. Similar to proof, arguments are a way of con

necting evidence to conclusions through the use of specific rules. However, an argument 

for a particular conclusion does not constitute a proof of that conclusion. A proof is 

formed through the valid application of inference rules upon true premises (axioms) in 

order to demonstrate the truth of a conclusion. If the proof is both valid and sound in 

this way, then the truth of the conclusion cannot be disputed. Proof is therefore clas

sified as a demonstrative method of reasoning, as a sound and valid proof indisputably 

demonstrates the truth of its conclusion. Furthermore, proof is classified as monotonic 

with respect to set inclusion on the knowledge base, as the addition of new knowledge 

cannot retract previous conclusions that have been successfully proven. 

In contrast, argumentation is a non-demonstrative method of reasoning. While argu

ments connect evidence to conclusions through the application of valid inference rules, 

neither the conclusions nor the evidence used are indisputable. Rather, the evidence is 

considered to be assumptions, not axioms, used to support the conclusion. In this way, 

a conclusion is warranted rather than proven through a process of argumentation. Given 

the possibility of disputation over the conclusion of a given argument, argumentation is 

itself classified as non-monotonic with respect to set inclusion on the knowledge base, as 

the addition of new knowledge may retract conclusions which were previously warranted. 

Given this classification, it may seem that proof is a superior form of reasoning to 

argumentation, as it may draw indisputable conclusions from evidence. The conditions 

under which proof may operate, however, are far more restrictive than those under which 

argumentation is possible. When knowledge is incomplete, imperfect or inconsistent, an 

indisputable proof of a conclusion is impossible, yet arguments for the conclusion may 

nonetheless be constructed. Under such conditions, it may be that arguments can be 
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constructed both for and against a particular conclusion; in this way, the conclusion may 

be disputed. Rather than being an undesirable side-effect, however, dispute is central to 

argumentation. 

While proof is able to indisputably determine the truth of a conclusion, argumentation 

cannot, as the conclusion of arguments may always be disputed by subsequent arguments. 

Instead, the goal of argumentation is to determine the warrant, or justification status, of a 

conclusion through a process of disputation [Lou98]. Where a proof of the absolute truth 

of a given conclusion with respect to an incomplete, inconsistent or imperfect knowledge 

base is impossible, a process of argumentation may determine that a given conclusion 

is more justified than its logical complement. As may be evident from the term itself, 

then, an argument’s justification status is generally not a simple boolean property, but 

rather a member of an ordered set describing levels of justification. There are, however, 

many different interpretations on how the justification status of a claim is determined, 

inasmuch as there are many different systems of argumentation in general. 

Regardless of the semantics of justification used by a particular argumentation system, 

all argumentation systems employ a common process to determine the justification status 

of a claim: the dialectic proof procedure. This procedure is framed as an interaction 

between two parties, a proponent and an opponent, wherein the proponent puts forward 

arguments in support of the claim, and the opponent in turn puts forward arguments 

against the claim. As the interaction proceeds, the proponent’s arguments may be either 

in direct support of the claim, or they may be arguments against the arguments put 

forward by the opponent, in order to defend the claim. Similarly, the opponent may 

either focus its arguments against the claim itself, or against the defense arguments of the 

proponent, in order to defend its attack against the claim. The termination conditions of 

the interaction, as well as the justification status of the claim computed by the interaction 

and the legal moves available to each side during the interaction, are all determined by 
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the particular argumentation system in use. 

2.2 Abstract Argumentation 

Despite the particular details of an argumentation system, the justification status of a 

claim is determined as a property of the relations between arguments put forth by the 

proponent and opponent of the claim, rather than as a property of the content of these 

arguments. Towards this end, the justification status of a claim is computed in terms of 

an argumentation framework, which provides a layer of abstraction between the content of 

arguments and the semantics of justification. In an argumentation framework, arguments 

are abstract entities whose role is determined by their relation to other arguments. The 

seminal argumentation framework proposed by Phan Minh Dung [Dun95] is built around 

the irreflexive binary attacks relation between arguments. 

Definition. An argumentation framework is a pair AF = (AR, attacks), where: 

1. AR is the set of all arguments 

2. attacks ⊆ AR×AR is a binary relation between arguments 

The argumentation framework then describes a directed attack graph between ab

stract argument entities, where attacks(A, B) is read as “argument A attacks argument 

B” (for A, B ∈ AR). Similarly, a set of arguments S ⊆ AR attacks an argument 

B ∈ AR if ∃A ∈ S such that attacks(A, B). 

Example 1. Let AF ex = (ARex, attacksex) be an argumentation framework, where: 

ARex = { a, b, c, d, e } 

attacksex = { (c, a), (c, b), (e, a), (e, b), (b, e), (b, c), (d, c) } 

A visual representation of the attack relation graph can be seen in Figure 2.1. 
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Figure 2.1: Argumentation Framework Example 

2.2.1 Argumentation Semantics 

As mentioned in Section 2.1, the goal of argumentation is to determine the justification 

status of a claim with respect to a given knowledge base. The justification status of 

an argument is determined through a process of argument evaluation, which is based on 

a particular argumentation semantics. The argumentation semantics defines a formal 

method, either procedurally or declaratively, by which an argument’s justification status 

may be evaluated with respect to an abstract argumentation framework. The justification 

status of an argument may be a boolean property (justified or not), but is more often 

a complex valuation, such as in [PSJ98], to allow for a more fine-grained comparison 

between arguments. 

There are two principal styles of defining argumentation semantics: either extension-

based semantics, or labelling-based semantics [BG09]. An extension-based semantics for 

an argumentation framework (AR, attacks) defines a set of extensions, where each exten

sion defines a particular subset of AR based on the attacks relations between arguments 

in AR. Arguments are then tested for membership in these extensions, and a hierarchi

cal organization of a semantics’ extensions may be used to define the complex valuation 
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domain for an argument’s justification status. Conversely, a labelling-based semantics 

defines a set of labellings, where each labelling defines a set of labels L and a function 

L : AR → L which assigns labels to arguments. The justification status of an argument 

is then derived from the labels assigned to the argument by the various labellings of the 

semantics. Of the two styles of argumentation semantics, the extension-based method is 

by far the predominant one. 

2.2.2 Preferred, Grounded and Complete Extensions 

In his seminal work on argumentation frameworks [Dun95], Phan Minh Dung defined a 

number of concepts which form the basis for many extension based argumentation se

mantics. These concepts are then used to define some of the fundamental extension based 

argumentation semantics: the preferred extension, which defines the credulous argumen

tation semantics, and the grounded extension, which defines the skeptical argumentation 

semantics. Further, Dung defines the complete extension, which he uses to provide a 

“link” between the preferred and grounded extensions. 

The following concepts are defined in terms of an argumentation framework 

AF = (AR, attacks). 

Definition. A set of arguments S ⊆ AR is conflict-free iff there does not exist A, B ∈ S 

such that attacks(A, B). 

Intuitively, then, a conflict-free set of arguments is simply a set of arguments which 

do not attack each other. 

Example 2. Considering the argumentation framework AFex from Example 1, we can 

then identify the following conflict-free sets: 

{ a, b }, { a, d }, { b, d }, { a, b, d }, { c, e} 
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Note that sets containing single arguments ({ a }, { b }, ... ) are also conflict-free, 

although trivially so. 

Definition. An argument A ∈ AR is acceptable with respect to a set of arguments 

S ⊆ AR iff for all B ∈ AR such that attacks(B, A), there exists C ∈ S such that 

attacks(C, B) 

An argument is then acceptable with respect to a set of arguments just in case the 

argument is defended by that set; that is to say, if any argument attacking A is in turn 

attacked by an argument in S, then A is acceptable with respect to S. 

Example 3. Given the argumentation framework AF ex from Example 1, for a subset 

of ARex such as S = { b, d }, we can see that a is acceptable w.r.t S, as all arguments 

which attack a (the arguments c and e) are attacked by arguments in S. Further, b 

and d are both acceptable w.r.t S, as all arguments attacking b and d are attacked by 

arguments in S. 

Definition. A set of arguments S ⊆ AR is admissible iff S is conflict-free, and ∀A ∈ S, 

A is acceptable with respect to S 

An admissible set of arguments can then be understood as a set of arguments which 

do not attack each other, and also defend the set against attacks from arguments outside 

the set. 

Example 4. For the argumentation framework AF ex of Example 1, we can identify the 

following admissible sets: 

{ b }, { d }, { e }, { a, b }, { a, d }, { a, b, d } 

Definition. The characteristic function of an argumentation framework AF is a function 

FAF : 2AR → 2AR, defined as: 

FAF (S) = {A | A is acceptable with respect to S} 
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Using the above concepts, we can now define the preferred extension, which is used 

to define the credulous argumentation semantics, and the grounded extension used to 

define the skeptical argumentation semantics. 

Definition. A preferred extension of an argumentation framework AF is an admissible 

set S ⊆ AR which is maximal with respect to set inclusion 

Example 5. Using the argumentation framework defined in Example 1, by examining 

the admissible sets identified in Example 4, it should be readily apparent that the set 

{ a, b, d } is the only preferred extension of AF ex. 

Definition. The grounded extension of an argumentation framework AF is the least 

fixed point of the characteristic function FAF , denoted GEAF 

Example 6. Once again using the argumentation framework AF ex of Example 1, the 

grounded extension GEAFex can be computed through the following procedure: 

FAFex ( ∅ ) = { d } 

FAFex ({ d }) = { d } 

and so GEAFex = { d } 

As can be seen from Examples 5 and 6, the grounded extension is a far more restrictive 

notion of argument acceptability than the preferred extension. Intuitively, this is because 

the grounded extension needs to be “grounded” in a set of arguments which are accept

able with respect to the empty set, and therefore do not need to be defended by other 

arguments, whereas the preferred extension is based on the idea of finding the largest 

set of arguments which provide collective defense for one another. The grounded and 

preferred extensions can then be seen as intuitively relating to the concepts of skepticism 

and credulity respectively, from which their respective semantics glean their names. 
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Definition. An admissible set of arguments S ⊆ AR is a complete extension iff for 

every argument A ∈ AR which is acceptable w.r.t S, A ∈ S. Defined in terms of the 

characteristic function FAF , S is a complete extension iff FAF (S) = S. 

The grounded, preferred and complete extensions are then related by the following 

properties [Dun95]: 

1. Every preferred extension is a complete extension, but not every complete extension 

is a preferred extension. 

2. The	 grounded extension is the smallest complete extension with respect to set 

inclusion. 

3. The set of complete extensions of an argumentation framework form a complete 

semilattice with respect to set inclusion. 

2.3 Structured Arguments 

Abstract argumentation provides a means to evaluate systems of arguments, yet it is 

notably abstracted away from the content of the arguments themselves. For practical 

purposes, it is useful to represent arguments as structures built out of sentences in a 

particular language, rather than as abstract argument entities. In this way, relations 

between arguments may be computed on the basis of the content of arguments, making 

use of relations between sentences in the language from which arguments are constructed. 

While sentences in natural languages could be used to form the content of structured 

arguments in automated argumentation, the meaning of and relations between natural 

language sentences cannot be easily computed. Instead, arguments used in automated 

argumentation are constructed out of sentences in formal logical languages, in which the 

meaning of sentences and relations between them may be precisely defined and computed. 
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Natural language argumentation makes use of well-defined argument structures, such 

as the syllogism and enthymeme. The structures used in automated argumentation are 

generally inspired by those used in natural language argumentation, albeit defined for

mally and often in terms of the underlying logical language. While the structural de

tails of arguments may vary between different formal systems of automated argumen

tation, all share a common structural feature of distinguishing a conclusion of the ar

gument, and the premises which support the conclusion. Many argumentation systems 

[PSJ98, APM00, AMP00, BH01, PWA03, BH05] make use of the following argument 

structure: 

Definition. Let L be a formal logical language, where ΣL is the set of all formulae which 

may be constructed out of L. 

An argument is a pair (Φ, α) where Φ ⊆ ΣL is a set of formulae supporting a conclusion 

formula α ∈ ΣL, such that: 

1. The support set Φ is consistent: Φ  f ⊥ 

2. The conclusion α is a logical consequence of Φ: Φ f α 

3. Φ is a minimal set satisfying (1) and (2): there is no Φ' ⊂ Φ such that Φ'  f ⊥∧Φ' f α 

In an argumentation system, arguments are usually drawn from a knowledge base Δ ⊆ 

ΣL, as it is often undesirable to allow arguments to be constructed out of any formulae 

expressible in the underlying language. For a given argument (Φ, α) and knowledge base 

Δ, it is generally the case that Φ ⊆ Δ, yet α /∈ Δ; an argument’s support should be 

based on existing knowledge, yet the conclusion is generally new knowledge derived from 

the existing knowledge. 

Further, it is not necessary that the knowledge base Δ is consistent. In fact, it is 

generally assumed that Δ f ⊥, as one of the primary reasons for employing argumen

tation techniques is to deal with inconsistent knowledge. Using the above definition of 
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an argument, it is nonetheless necessary that the support set Φ ⊆ Δ is consistent, even 

if Δ is not. If it were allowable that Φ f ⊥, then an inconsistent support set Φ could 

be used as support for any conclusion, since if Φ f ⊥, then for all α ∈ ΣL such that 

Φ f α. In general, then, the process of argumentation is used to identify consistent sets 

of support in an inconsistent knowledge base in order to justify conclusions outside the 

knowledge base. Since opposing arguments may be drawn from the same inconsistent 

knowledge base, the justification status of an argument cannot be determined on the 

basis of the content of the argument alone, but rather must be based on the relations to 

other arguments drawn from the knowledge base, as discussed in Section 2.2.1. 

2.3.1 Attack Relation Semantics 

In abstract argumentation, where arguments are merely abstract entities without struc

ture or content, it is sufficient to simply enumerate the relations between arguments. This 

is useful when investigating the semantics of justification, or other properties of the argu

mentation framework, where the details of argument content are inconsequential, as it is 

the network of relations between arguments that is important in this context. However, 

in a practical argumentation system, where arguments are constructed out of formulae 

in an underlying logical language, the relations between arguments are based on rela

tions between their composite formulae. For a sufficiently expressive underlying logical 

language, such as First Order Logic, there are an infinite number of possible arguments, 

and so these relations must be computed dynamically during argument evaluation. 

The primary relation of interest in all argumentation systems is the attacks relation. 

Following the work of John Pollock [Pol91], most argumentation systems make use of 

two different kinds of attack relations: the rebuttal, and the undercut. Informally, a 

rebuttal is a reason for denying the conclusion of an argument, whereas an undercut is a 

reason for denying the connection between an argument’s support and its conclusion. In 
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the context of the argument structure presented in Section 2.3, these relations may be 

generally expressed as follows: 

Definition. An argument (Φ, α) is a rebuttal of an argument (Ψ, β) iff α and β conflict. 

Definition. An argument (Φ, α) is an undercut of an argument (Ψ, β) iff α and Ψ conflict. 

Both rebuttal and undercut are based on the concept of conflict between composite 

elements of the arguments involved. The specific means of expressing conflict in particular 

argumentation systems is dependant on the underlying logic employed by the system. 

However, in general, composite elements (logical sentences) of arguments conflict if the 

elements together derive a contradiction. For example, consider Besnard and Hunter’s 

definitions of rebuttal and undercut for a system of argumentation based on classical 

propositional logic [BH01] : 

Example 7. An argument (Ψ, β) is a rebuttal for an argument (Φ, α) iff β ↔ ¬α is a 

tautology. 

Let Δ be the knowledge base { a ∧ c, ¬b → d, a → ¬(b ∨ c), ¬d } 

Let A1 be the argument ( { a → ¬(b ∨ c), a ∧ c }, a → ¬b ) 

A1 can be verified as a valid argument by testing that: 

1. The support set is consistent:
 

{ a → ¬(b ∨ c), a ∧ c }  f ⊥
 

2. The conclusion is a logical consequence of the support:
 

{ a → ¬(b ∨ c), a ∧ c } f (a → ¬b)
 

3. The support is minimal w.r.t set inclusion:
 

there is no Φ ' ⊂ { a → ¬(b ∨ c), a ∧ c } such that Φ ' f a → ¬b
 

Now, let A2 be the argument ( {a ∧ c, ¬b → d, ¬d}, a ∧ b ) 
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As with A1, A2 can be tested for validity in accordance with conditions 1, 2 and 3 

above. 

Finally, a rebuttal between A1 and A2 can be determined by testing whether 

((a ∧ b) ↔ ¬(a → ¬b)) f T. A simplified proof of this is as follows: 

1. ((a ∧ b) ↔ ¬(a → ¬b)) f T 

2. ((a ∧ b) ↔ ¬(¬a ∨ ¬b)) f T (re-write consequence as disjunction) 

3. ((a ∧ b) ↔ (a ∧ b)) f T (by De Morgan’s law) 

4. D 

Therefore, A2 is a rebuttal of A1 (and conversely, A1 is a rebuttal of A2, as rebuttals 

are symmetric attack relations). 

While this definition formulates conflict between the conclusions as testing for a tau

tology (β ↔ ¬α f T), this is equivalent to deciding the contradiction β ↔ α f ⊥. As will 

be discussed in Chapter 3, expressing such conditions as the derivation of a contradiction 

rather than a tautology is more efficient when using a refutation based theorem prover. 

Example 8. An undercut for an argument (Φ, α) is an argument (Ψ, ¬(φ1 ∧ ... ∧ φn)) 

where {φ1, ..., φn} ⊆ Φ. 

Let Δ = { a → b, a ∧ c, d → ¬a, d } 

Then the argument ({ a ∧ c, a → b }, b) is undercut by the argument 

({ d, d → ¬a }, ¬(a ∧ c)) 

This definition of the undercut attack relation illustrates a more direct means of iden

tifying conflict, as it does not rely on deduction. It is only necessary that the conclusion 

of the attacking argument is the negation of a subset of elements from the support of the 

attacked argument. 

In contrast, consider Amgoud et al ’s definition of the undercut relation, from [AMP00]
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Example 9. An argument (Φ, α) is undercut by an argument (Ψ, β) iff there exists φ ∈ Φ 

such that φ ≡ ¬β 

Let Δ = { a → b, a ∧ c, d → ¬a, d } 

Then the argument ({ a ∧ c, a → b }, b) is undercut by the argument 

({ d, d → ¬a }, ¬a ∨ ¬c) 

Note that these arguments in Example 9 do not satisfy the conditions for Besnard 

and Hunter’s undercut relation described in Example 8, as it is not the case that the 

conclusion of the attacking argument is the negation of a conjunction of elements of the 

support of the attacked argument. Amgoud’s definition is therefore a more inclusive 

definition of undercut, and similar to Besnard and Hunter’s definition of rebuttal in 

Example 7, this definition relies on deduction, as deciding that φ ≡ ¬β is equivalent to 

deciding φ ↔ ¬β f T, or rather, that φ ↔ β f ⊥. 

2.3.2 Attack Relations, Argument Evaluation and Deduction 

In order to determine the justification status of an argument, it is necessary to compute 

attack relations between arguments, as the argument’s justification status is determined 

as a property of the attack relation graph in the argumentation framework. As seen in 

Section 2.3.1, computing an attack relation between two arguments may involve deduc

tion, such as in the rebuttal relation described in Example 7, in which it is necessary to 

test whether β ↔ α f ⊥ to determine whether the conclusions of the arguments conflict. 

It may be that testing for a particular attack relation between two given arguments 

does not require deduction, as in the undercut relation described in Example 8. Deduction 

is nonetheless a necessary component procedure of the argument evaluation process for 

argumentation systems in which the set of all arguments cannot be pre-computed. Given 

an argument (Φ, α) and a knowledge base Δ, argument evaluation involves searching for 

arguments (Ψ, β) such that (Ψ, β) attacks (Φ, α). If the attacks relation being used is, for 



20 

instance, the undercut relation described in Example 8, this requires searching for a set 

Ψ ⊆ Δ such that Ψ  f ⊥ and Ψ f β where β = ¬(φ1 ∧ ... ∧ φn) such that {φ1, ..., φn} ⊆ Φ. 

While in simple cases it may be that β ∈ Δ, such that ({ β }, β) undercuts (Φ, α), in 

general it is necessary to search for a consistent subset of Δ that deductively entails β. 

Therefore, regardless of whether deduction is used to define an attack relation, searching 

for attacking arguments during argument evaluation nonetheless requires deduction. 

2.4 Argumentation in Multi-Agent Systems 

As discussed in Section 2.1, the goal of argumentation is to determine the justification 

status of a claim with respect to a incomplete, inconsistent or imperfect knowledge base. 

Early investigations into automated argumentation [Dun95, Lou98, PS99] focused on us

ing argumentation as a form of logic programming, where for a given knowledge base, the 

justification status of a claim could be computed by the dialectic proof procedure using 

particular argumentation semantics. Given that the field of automated argumentation 

draws inspiration from natural language argumentation, and further that the justification 

procedure is modelled after a dialogue between two parties, argumentation has naturally 

been adapted as a means of communicative interation between agents in a multi-agent 

system. 

While multi-agent argumentation systems make use of concepts developed in ear

lier argumentation systems, there are nonetheless significant differences between these 

branches of automated argumentation. Although agents in multi-agent argumentation 

systems may assume the roles of pro and con in a given dialogue, these roles are not 

identical to the roles of pro and con in the dialectic proof procedure, particularly due 

to the information available to these different entities. In a multi-agent system, argu

mentative agents generally possess individual knowledge bases, and so agents involved in 
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an argumentative interaction do not have complete access to all information which may 

be used to construct arguments during the interaction. Further, these agents generally 

possess individual goals, which may warrant their strategic manipulation of the argumen

tative interaction. When argumentation is implemented as a form of logic programming, 

however, both parties have access to the same information, and both have the same goal 

of determining the justification status of a claim. 

2.4.1 Dialogue Games 

The interactions between agents in a multi-agent argumentation system are controlled 

by a dialogue game, which defines rules regarding which “moves” may be made by par

ticipants at each stage of the interaction. The game consists of a set of two or more 

participants (agents), a set of locutions defining structured utterances which can be 

made by the participants, and a public commitment store containing the propositions 

which the various participants have committed to. Further, the interaction between 

the participants is controlled by a system of rules, which may be categorized as follows 

[MP02]: 

•	 Commencement Rules: rules defining the conditions under which a dialogue 

may begin. 

•	 Locutions: rules describing which utterances a participant may make, and the 

structure of these utterances. 

•	 Combination Rules: rules defining the conditions under which particular locu

tions may be permitted. 

•	 Commitments: rules defining the conditions under which a participant expresses 

commitment to a proposition. 
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•	 Termination Rules: rules describing the conditions which cause the interaction 

to end. 

While the commencement and termination rules control the dialogue itself, the locu

tion, combination and commitment rules control the individual moves made by players 

within the dialogue. A move in the dialogue is often defined as a structure containing a 

locution rule describing the structure of the utterance, combination rules describing the 

conditions under which the move is allowed, and commitment rules describing how the 

participants commitment stores are updated. For example, consider the following defini

tion of the assert locution from [AMP00], wherein participant P is addressing participant 

C: 

Example 10. assert(p) - where p is a propositional formula 

Rationality - the player uses its argumentation system to check if there is an ac

ceptable argument for p 

Dialogue - the other player can respond with: 

1.	 accept(p) 

2. assert(¬p) 

3.	 challenge(p) 

Update - CSi(P ) = CSi−1(P ) ∪ {p} and CSi(C) = CSi−1(C) 

In this example, the locution rule states that the utterance is structured as the term 

“assert” followed by a propositional formula surrounded by parentheses. The combination 

rules for this locution include the rationality rule, which states the conditions under which 

this locution may be performed, and the dialogue rule, which describes locutions the other 

agent may make in response to this locution. Finally, the participants’ commitments are 

modified through an update rule, which describes how the commitment stores of each 
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Table 2.1: Walton and Krabbe’s Dialogue Type Classification 

Dialogue Type Initial Situation Participant’s Goal Dialogue Goal 
Persuasion Conflicting opinions Persuade other Resolve conflict 

participant 

Inquiry Need for proof Find and verify Prove or disprove 
evidence hypothesis 

Negotiation Conflicting desire Maximize resources Reasonable 
for resources attained distribution 

Information A participant Give or receive Information exchange 
Seeking lacks information information 

Deliberation Situation requiring Co-ordinate goals Find best course 
action or actions of action 

player is updated as a result of the locution be uttered (where CSi(P ) refers to the set 

of propositions committed to by player P at time i). 

In addition to the rules used in dialogue games, different dialogue game types can be 

identified by higher level concepts such as the initial situation, the goal of the participants, 

and the overall goal of the dialogue. Walton and Krabbe [WK95] have identified a set 

of basic dialogue types, which include: persuasion dialogues, in which a participant 

attempts to convince its counterpart to accept a proposition, inquiry dialogues, wherein 

participants collectively attempt to answer a question, negotiation dialogues, in which 

participants argue over the division of resources, information seeking dialogues, wherein 

a participant seeks the answer to a question from others, and deliberation dialogues, 

in which participants collectively determine a course of action to take for a particular 

situation. The details of these different types of dialogues are summarized in Table 2.1, 

adapted from [AMP00]. 
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2.4.2 Semantics of Assertion and Acceptance 

In multi-agent argumentation systems, the goal of an interaction is generally more com

plex than simply determining the justification status of a claim, as discussed in Sec

tion 2.4.1. However, the process of determining the justification status of a claim nonethe

less plays a role in multi-agent argumentation. When an agent receives an argument from 

its counterpart in a dialogue game, the agent must determine whether or not it will ac

cept the argument. To make this decision, the agent needs to determine the justification 

status of the argument with respect to its knowledge base, using a particular argumen

tation semantics. Further, when asserting an argument to its counterpart, an agent also 

needs to test the justification status of the argument, in order to decide whether the 

argument is worth transmitting to its counterpart. In both cases, the dialectic proce

dure described in Section 2.2.1 may be used to determine the justification status of the 

argument, although the argumentation semantics used in each case are not necessarily 

equivalent. 

The particular semantics used by an agent is referred to as the agent’s attitude, which 

is further divided into an assertion attitude describing the conditions under which an 

agent may assert an argument, and an acceptance attitude describing the conditions under 

which an agent will accept an argument. While there are common terms used to refer 

to agent attitudes, such as skeptical or credulous acceptance attitudes, the particular 

semantics related to these attitudes varies from system to system, depending on the 

argumentation framework used by the system. These attitudes are often related in their 

general concepts, however, insomuch as a skeptical agent will generally be more restrictive 

than a credulous agent in the arguments they accept. 

Parsons et al. define the following assertion and acceptance attitudes [PWA03] for 

arbitrary agents G and H engaged in a dialogue, either of which may be in the role of 

pro or con. These attitudes are defined in terms of a preference-ordered argumentation 
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framework, which will be described briefly as well. 

Example 11. Agent attitudes in a preference-ordered argumentation framework 

Let AF = (A(Σ), Undercut, P ref) 

where A(Σ) is the set of arguments that can be built from the set of formulae Σ 

and Undercut ⊆ A(Σ) ×A(Σ) is the binary undercut relation between arguments 

and P ref is a (partial or complete) pre-ordering on A(Σ) ×A(Σ) 

»P ref •	 For A1, A2 ∈ A(Σ), if A1 A2 then A1 is stronger than A2 

•	 For A1, A2 ∈ A(Σ), if A2 undercuts A1, then A1 defends itself against A2 

»P ref iff A1 A2 

•	 For S ⊆ A(Σ), A ∈ A(Σ), S defends A iff for all B ∈ A(Σ) such that 

B undercuts A and A does not defend itself against B then there exists C ∈ S 

such that C undercuts B and B does not defend itself against C 

•	 Let F(S) = { A ∈ A(Σ) | S defends A }, where S ⊆ A(Σ) 

•	 The set of acceptable arguments SΣ is the least fixpoint of the function F 

Let A(G, H) = A(ΣG ∪ CS(H)) 

where ΣG is the knowledge base of agent G 

and CS(H) is the public commitment store of agent H 

Assertion attitudes 

•	 If G is confident, then it can assert any proposition α for which there is an argument 

(Φ, α) ∈ A(G, H) 

•	 If G is careful then it can assert any proposition α for which there is an argument 

(Φ, α) ∈ A(G, H) and no stronger argument (Ψ, ¬α) ∈ A(G, H) 

•	 If G is thoughtful then it can assert any proposition α for which there is an accept

able argument (Φ, α) ∈ A(G, H) 
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Acceptance attitudes
 

•	 If G is credulous then it can accept any proposition α previously asserted by H if 

(Φ, α) ∈ A(G, H) 

•	 If G is cautious then it can accept any proposition α previously asserted by H for 

which there is an argument (Φ, α) ∈ A(G, H) and there is no stronger argument 

(Ψ, ¬α) ∈ A(G, H) 

•	 If G is skeptical then it can accept any proposition α previously asserted by H for 

which there is an acceptable argument (Φ, α) ∈ A(G, H) 

In comparison to the extensions described in Section 2.2.2, the assertion and accep

tance attitudes also use extension-based semantics which are defined in terms of relations 

in the argumentation framework, rather than the content of arguments themselves. How

ever, while the agent attitudes described above make use of terms such as credulous and 

skeptical, these are quite different from the credulous and skeptical semantics defined by 

Dung [Dun95]. For instance, the credulous argumentation semantics of Dung makes use 

of the preferred extension, which may intuitively be described as a maximal set providing 

collective defense for its elements. In contrast, the semantics used by the credulous agent 

attitude described above does not take into account attack relations between arguments, 

but rather only requires that an argument can be constructed for the proposition, result

ing in a far more inclusive definition of credulous semantics. This is generally indicitive 

of the state of the field of automated argumentation, as commonly used terms are often 

re-defined to suit an author’s particular purposes. 

2.4.3 Argumentation in Open Multi-Agent Systems 

An important distinction in multi-agent systems is the difference between closed and open 

multi-agent systems. In a closed multi-agent system, agents are designed and controlled 



27 

by a single entity1, and the agents run on trusted resources under the control of that 

entity. In contrast, an open multi-agent systems allows for agents that are designed and 

controlled by different entities, and the agents may run on untrusted and failure prone 

resources. Where in a closed multi-agent system agent interactions are ultimately gov

erned by the design of the agents, in an open multi-agent system the agents’ interactions 

may be governed only through protocol, as the agents may be designed by many different 

entities. Open multi-agent systems therefore allow for the possibility of malicious agents 

that pursue their own goals by subverting the intention of the system towards their own 

ends. Malicious agents are distinct from competitive agents in that, while competitive 

agents pursue their own goals, they nonetheless “play fair” with other agents, whereas 

malicious agents will attempt to exploit and subvert the system in order to achieve their 

goals. 

Argumentation has been proposed as a means of interaction between agents in open 

multi-agent systems, for applications such as automated negotiations in E-Commerce sys

tems [BN02a, BN02b] and as a general means of negotiating agent rights in open multi-

agent systems [Alo04]. However, while security measures have been studied to counteract 

malicious agents in general open multi-agent systems [SC00], little attention has been 

paid to the unique challenges of malicious behaviour in open multi-agent argumentation 

systems. Recently, Rahwan and Larson [RL08] investigated the possibility of malicious 

agents strategically withholding information in order to manipulate the outcome of ar

gumentative interactions. Further, the research of P.E. Dunne [Dun03] investigates the 

strategic manipulation of dialogue games, whereby a malicious agent may attempt to 

delay a particular conclusion until the resource bounds of the dialogue game have been 

exhausted, and therefore manipulate the outcome of the interaction. In this thesis, how

1This is not to say that agents in a closed MAS are necessarilly centrally controlled, but rather that 
they are instantiated and terminated by a single entity 
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ever, the focus is on malicious agent strategies designed to exploit the resource bounds 

of another agent in order to manipulate the outcome of the argumentation process. 

2.5 Resource Bounded Argumentation 

Agents interacting within an environment must make decisions as to which actions to 

perform in the situations they find themselves, and these decisions are based on a process 

of reasoning. The reasoning process, however, is non-trivial, and may be intractably 

complex due to the logics, knowledge and computations used to make these decisions. 

Nonetheless, agents need to make decisions in a timely fashion, as the situation may be 

dynamically changing during the reasoning process, and the results of a lengthy decision-

making computation may be inapplicable upon completion. It is therefore necessary for 

practical purposes that agents’ decision procedures are resource bounded [BIP88]. 

When argumentation is used in practical systems, then resource bounds must be im

posed. Particularly when argumentation is used in a multi-agent system, either as a 

decision support mechanism [KM03] or as a means of communicative interaction with 

other agents [APM00, PSJ98], the amount of time consumed by the argumentation pro

cess must be limited in order for agents to act in a timely fashion. The specific resource 

limit may either be self-imposed by the agent, or dictated by protocol, as is typical when 

agents are engaged in communication. 

The highest level at which resource bounds must be placed on the argumentation 

process is at the level of the dialogue game. Given the possibility of infinitely long, or 

even extremely long finite lines of argumentation, it is necessary to impose a limit on the 

resources consumed during the dialogue as a whole [Lou98]. In terms of the categorization 

of dialogue rules given in Section 2.4.1, such a resource limit would be formalized as a 

termination rule for the dialogue, although resource exhaustion isn’t the only condition 
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under which dialogue termination could occur2 . 

The next level at which resource limitations must be considered concerns the locution 

decision procedure used by agents to determine which “move” to play during their turn 

of the dialogue. As discussed in Section 2.4.2, this procedure involves an agent testing 

the acceptability of their counterpart’s previous move, and subsequently searching for an 

argument to respond with which is admissible in accordance to their assertion semantics. 

Depending on the particular argumentation semantics used for these purposes, an agent’s 

locution decision procedure may involve lengthy or even intractable search processes. 

However, if this procedure is not bound by resource constraints, an agent could surpass 

the resource limit of the dialogue while deciding its next move, either unintentionally or 

strategically, preventing its counterpart from engaging in the dialogue. In the interest of 

fairness, then, it is necessary to evenly distribute resources between all parties engaged 

in the dialogue [Lou98], and therefore it is necessary to limit the resources consumed by 

agents’ locution decision procedures during each turn of the dialogue game. 

Finally, at the lowest level, it may be necessary for agents to impose resource limits 

on the attack relation decision procedure. If an agent is using a sufficiently expressive 

underlying logical language to express the content of arguments, such as first-order pred

icate logic [BH05], deciding deduction may be an intractable procedure. As discussed in 

Section 2.3.1, the attack relation is often based on deciding deductive relations between 

component formulae of arguments. Given that most argumentation semantics involve 

computing attack relations between numerous arguments, it is necessary to distribute 

the resources allocated to the argument evaluation procedure amongst the individual 

attack relation computations. While an agent may or may not use a fairness criteria to 

evenly distribute these resources, however, any one attack relation decision is maximally 

2Rather, it is preferable for a dialogue to terminate “naturally” due to a particular state of the 
dialogue being reached rather than “un-naturally” due to resource exhaustion 
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bounded by the resource limit of the argument evaluation procedure, which is in turn 

bounded by the resource limit of locution decision during an agent’s turn in the dialogue 

game. 
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Chapter 3 

Automated Theorem Proving 

This chapter is intended to provide the reader with enough background information on 

automated theorem proving to understand its use in the context of this thesis. The 

chapter is organized as follows: in Section 3.1, a general description of logics is provided, 

which includes a description of the logical language by which formulae are constructed, 

the truth domain onto which logical formulae are evaluated, and the semantics of this 

evaluation. In Section 3.2, the logical calculus is described, which provides the means 

of syntactic evaluation and manipulation of logical formulae. Section 3.3 then describes 

the relations of soundness and completeness between the semantic evaluation defined 

by the interpretations and the syntactic evaluation defined by the calculus. Finally, in 

Section 3.4, the search control is described, which provides the means by which the proof 

of theorems may be automated. 

3.1 Logics 

Informally, a logic is a means to relate formal syntax and semantics. Syntax deals with 

representation; the collection of symbols used, and the ways they can be combined to

gether. In logics, the syntax is formal, in that the representational constructs must 

adhere to specific rules, and do not permit the breaking of these rules for artistic reasons 

or otherwise, as might be permitted in natural languages. Conversely, semantics deals 

with the meaning of these syntactic constructs; again, in logics, semantics is formal

ized. Whereas meaning in natural languages is often open to individual interpretation 

or ambiguity, the semantics of logics are based on strict formal rules. The meaning of 
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an expression in a logic is determined by its relation to the truth-domain of the logic via 

interpretation. Interpretation, as it relates to logics, is once again a formalized notion, 

rather than the notion of interpretation used in natural languages. For each syntactic 

symbol or structure of a logic, an interpretation assigns either a member of the truth 

domain, the object domain, or a relation between these domains. While a logical expres

sion can be evaluated in relation to a particular intended interpretation, it is often the 

case that we are interested in evaluating an expression in relation to many or all possible 

interpretations. For instance, it is often desirable to determine whether an expression is 

tautological or contradictory; that is to say, whether an expression is evaluated as true 

or false, respectively, under all possible interpretations. Given this informal description 

of logics, we now turn towards a formal definition. 

Definition. A logic is represented as a triple ( L, W , I ), where: 

• L is the language of the logic, which defines the syntax of the logic, expressed as 

the set of all well-formed formulae. 

• W	 is the truth-domain of the logic, a set of truth-values onto which formulae are 

evaluated. 

• I is the set of all interpretations of the logic, defining the logic’s semantics. 

3.1.1 The Logical Language L 

The language of a logic defines the syntactic form of valid expressions in that logic. 

Similar to natural written languages, logical languages consist of expressions constructed 

out of sequences of symbols in accordance with particular rules. The set of all symbols 

from which these sequences are constructed is also referred to as an alphabet, which is 

divided into several classes denoting the role of each symbol. For convenience, symbols 

used in logics are often borrowed from the Roman and Greek alphabets, although it 
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should be noted that these logics are in no way bound to those particular symbols; 

rather, it is important only that the different classes of symbols are unique in order to 

avoid ambiguity. 

Definition. An alphabet is a set of symbols used by a language, divided into distinct 

classes of symbols. In general, logical languages can be described by the following ten 

classes of symbols: 

1.	 constants (C) - symbols which reference a particular object in the domain, often 

denoted by lowercase letters at the beginning of the roman alphabet, ie: a, b, c 

2.	 variables (V ) - symbols which may reference any object in the domain, often de

noted by lowercase letters at the end of the roman alphabet, ie: x, y, z 

3.	 functions (F ) - symbols referencing a mapping between n domain objects onto a 

single domain object, often denoted by lowercase roman letters such as f, g, h 

4.	 function variables (FV ) - symbols referencing any mapping between n domain 

objects onto a single domain object 

5.	 predicates (P ) - symbols referencing a mapping between n domain objects onto a 

single truth value, often denoted by uppercase roman letters such as P, Q, R 

6.	 predicate variables (PV ) - symbols referencing any mapping between n domain 

objects onto a single truth value 

7.	 interpreted predicates (PI) - symbols referencing a mapping between n domain 

objects onto a single truth value, for which the interpretation is constant 

8.	 junctors (J) - symbols referencing a mapping between n (where n is generally 1 or 2) 

truth values onto a single truth value, denoted by symbols such as ∨, ∧, ¬, →, ↔ 

9.	 quantifiers (Q) - symbols referencing a construct which specifies a quantity of the 

object domain over which an open variable in a particular formula is assigned, 
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mapping onto a truth value; quantifiers are denoted by symbols such as ∃, ∀ 

10.	 punctuation - symbols used to denote groupings of other symbols, or to provide 

clarification and readability, such as (, ) and , 

Example 12. Propositional logic is a logic which contains only predicate variables, re

ferred to as propositions, and the basic set of logical junctors. Additionally, it may 

be convenient to defined a few interpreted predicates for a propositional logic, such as 

true and false. Since propositional logic does not make use of an object domain, there 

are no object domain variables, constants, functions, function variables, predicates or 

quantifiers. 

The alphabet of propositional logic can be described by the following sets of symbols: 

• Predicate variables PV = { p, q, r, ... } 

• Interpreted predicates PI = { true, false } 

• Junctors J = { ∨, ∧, ¬, →, ↔} 

• C	 = V = F = FV = P = Q = ∅ 

Example 13. First-Order Predicate Logic includes object domain variables and con

stants, as well as functions, predicates, the basic set of logical junctors, and the exis

tential and universal quantifiers. While more robust than propositional logic, first-order 

predicate logic still does not permit the use of function or predicate variables. 

The alphabet of first-order predicate logic can by the following sets of symbols: 

• Constants C = { a, b, c, ... } 

• Variables V = { x, y, z, ... } 

• Functions F = { f, g, h, ... } 
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•	 Predicates P = { P, Q, R, ... } 

•	 Junctors J = { ∨, ∧, ¬, →, ↔} 

•	 Quantifiers Q = { ∃, ∀ } 

•	 PV = PI = FV = ∅ 

Sequences of symbols from the alphabet of a logic are referred to as expressions in 

that language. However, not all expressions are valid; the set of all expressions in a 

language is the set of all possible sequences of the symbols of that language’s alphabet. 

Those expressions which are valid in a given language are referred to as the formulae of 

that language. 

Definition. The language L of a logic is the set of all formulae of that logic, where these 

formulae consist of a sequence of symbols from an alphabet composed in accordance with 

specific formation rules. 

The formulae of a logical language L are constructed in accordance with certain for

mation rules. These formation rules are used to define two groups of syntactic constructs: 

the terms, which are to be evaluated to elements of the object-domain, and well-formed 

formulae, which will evaluate to elements of the truth-domain. The set L consists only 

of well-formed formulae, where the terms of a language are constituent parts of the well-

formed formulae. 

Definition. A term is defined recursively as follows: 

•	 Any variable symbol v ∈ V is a term 

•	 Any constant symbol c ∈ C is a term 

•	 If f ∈ F is an n-ary function symbol and t1, ..., tn are terms, then f(t1, ..., tn) is 

a term 
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• If g ∈ FV is an n-ary function variable symbol and t1, ..., tn are terms, then 

g(t1, ..., tn) is a term 

Definition. A well-formed formula (wff) is defined recursively as follows: 

•	 If R ∈ P ∪ PI is an n-ary predicate symbol and t1, ..., tn are terms, then 

R(t1, ..., tn) is a wff (these particular wffs are also known as atoms) 

•	 If R ∈ PV is an n-ary predicate variable symbol and t1, ..., tn are terms, then 

R(t1, ..., tn) is a wff 

•	 If * ∈ J is an n-ary junctor and α1, ..., αn are wffs, then *(α1, ..., αn) is a wff 1 

•	 If α is a wff, x ∈ V ∪ FV ∪ PV is a variable, and D ∈ Q is a quantifier, then D x • α 

is a wff 

Example 14. In propositional logic, the sets of interpreted predicates PI and predicate 

variables PV contain only 0-ary symbols. Using the alphabet described in Example 12, 

consider the following expressions: 

1.	 p ∨ q ∧ (r → true) 

2.	 → (∧(q, ¬(r)), ∨(q, p)) 

3.	 p(r) → (q ∨ r) 

4.	 r ↔ ¬q(p ∨ r) 

Expressions 1 and 2 are valid well-formed formulae, where as 3 and 4 are not. Note 

that propositional logic does not contain any terms, as it does not use an object domain, 

but rather has only symbols which evaluate onto the truth domain. 

1note that unary junctors are often written in prefix notation as *α1, and binary junctors often are 
written in infix notation as α1 * α2 
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3.1.2 Normal Forms 

When implementing a theorem prover, it is often necessary to transform formulae from 

their general form as described by the logical language into a specific normal form, in 

order to facilitate the particular calculus being used. In resolution-based theorem proving 

for first-order predicate logic, formulae are generally converted to clausal normal form, 

in which clauses are disjunctions of literals, and sets of clauses represent the conjunction 

of their elements. 

Definition. A literal is either an atom or the negation of an atom, where the former is 

known also as a positive literal and the latter as a negative literal. 

Definition. A clause is a formula of the form: 

∀ x1, ..., xn (L1 ∨ ... ∨ Lm) 

where L1, ... , Lm are literals (positive or negative) and x1, ... , xn are all variables 

occuring in these literals. 

It is often convenient to collect together positive and negative literals in the clausal 

representation, and represent the clause as a conditional: 

∀ x1, ..., xn (A1 ∨ ... ∨ Ai ∨ ¬B1 ∨ ... ∨ ¬Bj ) 

∀ x1, ..., xn (A1 ∨ ... ∨ Ai ← B1 ∧ ... ∧ Bj ) 

3.1.3 The Truth Domain W 

The truth domain W is the set of values onto which formulae in a logic are evaluated. 

Commonly, logics make use of the boolean truth domain { true, false }, although in 

general they are not restricted to just this domain. Many-valued logics may introduce 

additional truth values to the boolean domain, such as unknown, undecidable, etc., or they 

may make use of infinite truth domains, such as the interval of real numbers [0,1] used in 

many probabilistic logics. Further, some many-valued logics express the truth-domain as 
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complex structures such as trees, graphs or lattices, in order to express complex relations 

between the various truth values. 

3.1.4 The Interpretations I 

An interpretation is a method of assigning meaning to symbols in a logical language, 

thereby creating the semantics for a logic. Symbols are interpretted by assigning to them 

either a member of an object-domain, a member of the truth domain, or a mapping 

between these domains. 

Definition. Formally, an interpretation I consists of: 

1. A non-empty set D, known as the object domain of the interpretation 

2. An assignment of an element of D to each constant in C 

3. An assignment of an element of D to each variable in V 

4. A mapping Dn → D for each n-ary function symbol in F 

5. A mapping Dn → D for each n-ary function variable symbol in FV 

6. A mapping Dn → W for each n-ary predicate symbol in P 

7. A mapping Dn → W for each n-ary predicate variable symbol in PV 

8. A mapping Dn → W for each n-ary interpreted predicate symbol in PI 

9. A mapping Wn → W for each n-ary junctor in J 

10. A combination rule for truth values in W for each quantifier D in Q, such that 

I(D x • α) is determined by combining the truth values of all formulae generated 

by substituting the variable x in α with an arbitrary element of D, or the function 

variable x in α with an arbitrary function over D of the correct arity, or the predicate 

variable x in α with an arbitrary predicate with the correct arity 
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I = {I1, I2, ...} is then a set of interpretations, such that: 

•	 Ii(R) = Ij (R) for all interpretations Ii, Ij and all interpreted predicate symbols 

R ∈ PI 

•	 Ii(*) = Ij(*) for all interpretations Ii, Ij and all junctor symbols * ∈ J 

•	 Ii(D) = Ij (D) for all interpretations Ii, Ij and all quantifier symbols D ∈ Q 

Example 15. Using the alphabet defined for propositional logic in Example 12, consider 

the formula ¬p∨q. Using the boolean truth-domain Wbool = {true, false}, both predicate 

variable symbols p and q may be interpreted as true or false. 

The junctor ¬ is unary, interpreted as: 

•	 I(¬(true)) = false 

• I(¬(false)) = true
 

The junctor ∨ is binary, interpreted as:
 

•	 I(∨(false, false)) = false 

•	 I(∨(false, true)) = true 

•	 I(∨(true, false)) = true 

• I(∨(true, true)) = true
 

The set of all possible interpretations for ¬p ∨ q is then : I = {
 

•	 I0 : I(p) = false, I(q) = false : I(¬p ∨ q) = I(∨(I(¬(false)), false))
 

= I(∨(true, false))
 

= true
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•	 I1 : I(p) = false, I(q) = true : I(¬p ∨ q) = I(∨(I(¬(false)), true))
 

= I(∨(true, true))
 

= true
 

•	 I2 : I(p) = true, I(q) = false : I(¬p ∨ q) = I(∨(I(¬(true)), false))
 

= I(∨(false, false))
 

= false
 

•	 I3 : I(p) = true, I(q) = true : I(¬p ∨ q) = I(∨(I(¬(true)), true))
 

= I(∨(false, true))
 

= true
 

} 

3.1.5 Models and Satisfiability 

Interpretations provide meaning for formulae in a logic. Once meaning has been estab

lished, it is necessary to then examine what kind of questions about formulae in a logic 

we would want to answer. For a given formula in a particular logic, we are primarily 

interested in questions about how the formula relates to elements of the truth domain 

under the set of all interpretations I. For a boolean logic, such as propositional logic, we 

are then interested in determining under which interpretations the formula evaluates to 

true, and conversely under which interpretations it evaluates to false. 

Definition. If a formula α ∈ L is true under a given interpretation I ∈ I, then I is a 

model for α, expressed as |= I α. 

When necessary, a superscript will be used with the model symbol to denote a par

ticular logic under which an interpretation is a model for a particular formula, such that 

|=S 
I α is to be interpreted as α is true under interpretation I for a logic S = (LS , WS , IS ). 

Definition. If there exists an I ∈ I such that |= I α, then α is satisfiable. 
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Definition. Conversely, if there does not exist an I ∈ I such that |= I α, then α is 

unsatisfiable; a formula which is unsatisfiable is also referred to as a contradiction, as it 

evaluates to false under every interpretation. 

Definition. If every interpretation I ∈ I is a model for α, then α is a tautology, expressed 

as |= α. 

In addition to determining whether a particular formula is satisfiable, tautological, 

contradictory, etc., it is often desirable to determine consequence relations under inter

pretations. That is to say, whether a formula is true under all interpretations which are 

models for a specific set of formulae. Particularly, we are interested in determining this 

consequence relation with respect to a distinguished set of formulae for the logic, known 

as axioms. 

Definition. Given a set of formulae Γ ⊆ L and a formula α ∈ L, if for all interpretations 

I ∈ I such that |= I Γ it is the case that |= I α, then α is a theorem of Γ, denoted Γ |= α. 

3.2 Logical Calculus 

As stated in the previous section, the goal when using a logic is generally to evaluate 

the relation between a formula or set of formulae and the truth domain under all in

terpretations in I. While it may be feasible to perform this evaluation under all the 

interpretations for formulae in a simple logic, for complex logics permitting an infinite or 

even large finite number of possible interpretations, such an evaluation is likely far too 

computationally complex. The use of interpretations for explaining logical evaluation is 

useful from a theoretical perspective, although for practical purposes it is insufficient as 

a means of efficiently evaluating formulae. There is, however, another approach by which 

formulae may be evaluated without the need for iterating over every possible interpreta

tion in the logic. By successively applying truth-preserving inference rules, formulae may
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be re-written into a form for which the evaluation under all interpretations in I is known, 

thereby effectively evaluating the formulae without the need for iterating over every in

terpretation from I. A system of inference rules, in combination with a distinguished set 

of formulae known as axioms, is referred to as a logical calculus. 

Definition. For a given logic (L, W , I), a calculus is a structure (A, R), where: 

• A ⊆ L is a distinguished set of formulae, known as the axioms 

• R is a set of truth-preserving inference rules 

3.2.1 Inference Rules 

Rather than simply working with individual formulae, theorem proving deals with col

lections of formulae, such as the axioms, the supporting formulae and the set of formulae 

representing the theorem to be proved. In order to perform a proof, it is necessary that 

these various collections of formulae be structured in a particular knowledge represen

tation. This representation may be as simple as a set containing all formulae in those 

collections, or it may have a more complex structure such as a set of sets, a tree, or 

otherwise. Given a particular knowledge representation, inference rules may be defined 

to perform syntactic manipulation of the knowledge encoded in that representation. 

Definition. An inference rule is a transformation on a knowledge representation, taking 

the form: premise 
conclusion 

An inference rule is applied to a knowledge representation by first matching the 

premise of the rule against components of the knowledge representation, and then re

placing those components matched by the premise with the conclusion of the rule to 

create a new knowledge representation. An inference rule is correct just in case it pre

serves the truth-value evaluation of the knowledge representation across the transforma
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tion. That is to say, if the initial knowledge representation is contradictory, then the 

knowledge representation resulting from the application of the inference rule must also 

be contradictory. 

The purpose of inference rules is therefore to manipulate the syntax of the represented 

knowledge while preserving the semantics. The goal of theorem proving is to demonstrate 

that the theorem being proved is a semantic consequence of supporting formulae. This 

can be accomplished by identifying syntactic properties of the knowledge representation 

for which certain semantic properties are known. However, these syntactic properties may 

not be immediately identifiable, in which case it is necessary to apply inference rules until 

either the syntactic property in question can be easily identified, or it is impossible to 

apply further inference rules to the knowledge representation. 

Definition. A deduction from Δ to Φ, represented as Δ f Φ, is a means of establishing 

that Φ is a syntactic consequence of Δ. 

Let Φ ⊆ L and Δ ⊆ L be sets of formulae. 

Let Γ0 be the initial knowledge representation of Φ and Δ, constructed in accordance 

with a particular calculus C = (A, R), and Ψ ∈ L be a distinguished syntactic element 

representing the goal. 

Let α fr β represent the application of the single inference rule r ∈ R to the knowledge 

representation α, the result of which is a new knowledge representation β. 

If there exists a finite sequence of inference rules r1, ..., rk, where ri ∈ R for 1 ≤ i ≤ k, 

such that Γ0 fr1 Γ1 fr2 ... frk Γk and Ψ ∈ Γk, then Δ f Φ. Otherwise, if no such sequence 

exists, then Δ  f Φ. 

Where necessary, deduction using a particular calculus C = (A, R) will be denoted 

fC . 
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3.2.2 Resolution 

The resolution inference rule is used in refutation-based theorem proving, whereby the 

theorem to be proven is negated and conjoined with the support, and the resolution 

inference rule is applied until either the empty clause is syntactically derived, or no 

further applications of the inference rule are possible. The goal is then to show that the 

initial knowledge representation (the support set conjoined with the negated theorem) is 

semantically contradictory, given that there exists a syntactic derivation to the empty set, 

which is easily identifiable and known to be evaluated as false under all interpretations. 

Formally, the resolution rule for first-order predicate logic can be written as: 

α1 ∨ ... ∨ αi ∨ ... ∨ αn , β1 ∨ ... ∨ ¬βj ∨ ... ∨ βm 

θ(α1 ∨ ... ∨ αi−1 ∨ β1 ∨ ... ∨ βj−1 ∨ βj+1 ∨ ... ∨ βm ∨ αi+1 ∨ ... ∨ αn) 

where θ = mgu(αi, βj ) 

Essentially, the resolution inference rule is used to identify pairs of complementary lit

erals αi and ¬βj which are unifiable (unification will be discussed further in Section 3.2.3). 

If two formulae α1 ∨ ...∨αn and β1 ∨ ...∨βm are identified which contain such complemen

tary literals, then the formulae can be re-written by removing the complementary literals 

αi and ¬βj and combining what’s left of the formulae by disjunction, and applying the 

unifier of αi and βj . 

Example 16. Let Δ = {∀x • (¬P (x) ∨ Q(x)), P (a)} be a set of supporting formulae and 

Φ = {∃y • Q(y)} be the theorem to be proved, both in first-order predicate logic. 

The initial knowledge representation is then: 

Γ0 = Δ ∪ ¬Φ = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y)}. 

The distinguished syntactic element representing the goal is the empty set, Ψ = D. 

By selecting the first two formulae of Γ0 and applying the resolution rule to the 

complementary literals ¬P (x) and P (a) using the unifier {x ≈ a}, this results in the 
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formula Q(a). 

Γ1 = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y), Q(a)}. 

The resolution rule can further be applied to the formulae Q(a) and ¬Q(y) using the 

unifier {y ≈ a}, which results in the empty set D. 

Γ2 = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y), Q(a), D}. 

Since Ψ ∈ Γ2, by refutation, {∃y•Q(y)} has therefore been shown to be a consequence 

of the set {∀x • (¬P (x) ∨ Q(x)), P (a)}. 

3.2.3 Unification 

When a logic uses variables, those variables may be substituted by simple or complex 

terms, atoms or formulae, depending on the domain over which the variables vary. Infer

ence rules often require a comparrison between components of the premises or conclusion, 

such as in Example 16 above, where the literals αi and βj need to be matched. Given 

formulae in a first-order predicate logic, such as P (a) and ¬P (x) ∨ Q(x) in which a is 

a constant, x is a variable and P and Q are predicates, it is necessary to match P (a) 

and P (x) in order to execute the inference rule and achieve the result Q(a). To accom

plish this, a substitution needs to be applied to ¬P (x) ∨ Q(x) in which all occurances of 

the variable x are replaced with the constant a. The application of this substitution to 

the conditional would result in ¬P (a) ∨ Q(a), which can then be syntactically matched 

against the formula P (a) in order to perform the resolution inference rule and derive the 

conclusion Q(a). The process by which a substitution is found in order to make two or 

more terms or formulae equivalent is known as unification. 

Definition. A substitution is a finite set θ = { v1 ≈ t1 , ..., vn ≈ tn }, where each vi is 

a variable, each ti is a term in which vi does not occur, and v1, ..., vn are each distinct. 

The application of a substitution θ to a formula α results in a formula α ' in which all 

occurances of the variable vi have been replaced with the term ti, for all 1 ≤ i ≤ n. 
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Example 17. Let α = P (x, y, f(x, a)) and θ = { x ≈ g(y), y ≈ b }. 

Then θα = P (g(y), b, f(g(y), a)). 

Definition. Let θ = { v1 ≈ t1 , ..., vn ≈ tn } and σ = { u1 ≈ s1 , ..., um ≈ sm } be 

substitutions. The composition θσ of θ and σ is the substitution obtained from: 

{ v1 ≈ σ t1 , ..., vn ≈ σ tn, u1 ≈ s1 , ..., um ≈ sm } 

by removing any vi ≈ σ ti for which vi = σ ti and removing any uj ≈ sj for which 

uj ∈ {v1, ..., vn}. 

Definition. Let S = { s1 , ..., sn } be a finite set of expressions (terms, formulae, 

etc.) and θ be a substitution. θ is a unifier for S if θS is a singleton; that is to say, if 

θs1 = θs2 = ... = θsn. A unifier θ for S is a most general unifier (mgu) for S if for all 

unifiers σ of S, there exists a substitution γ such that σ = θγ. 

Example 18. S = { P (f(x), z), P (y, a) } is unifiable by σ = { y ≈ f(a), x ≈ a, z ≈ a }. 

However, θ = { y ≈ f(x), z ≈ a } is a most general unifier for S, as σ = θ{x ≈ a}, and 

there exists a suitable γ for other unifiers of S as well. 

Unification therefore provides a useful tool by which equivalence of expressions can 

be expressed in inference rules for logics which make use of variable symbols, such as 

first-order logics. 

3.3 Soundness and Completeness 

It is not enough to simply have a system of inference rules with which to perform de

ductions on formulae in a logic. It is also necessary that the system of inference rules is 

correct with respect to the logic. That is to say, if a formula can be derived through the 

application of inference rules, then it also must be true under all interpretations. This 

is known as the soundness property of a logical calculus. Conversely, it is also desirable 
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that there exist derivations for those formulae which are true under all interpretations, a 

property which is known as completeness. Minimally, a logical calculus must be sound, 

and to be robust it is also useful for it to be complete. Formally, these properties can be 

defined as follows. 

Definition. A logical calculus C = (A, R) is sound for a logic S = (L, W , I) if and 

only if for all sets of formulae Γ ⊆ L and for all formulae α ∈ L, if Γ fC α then Γ |=S α. 

Definition. A logical calculus C = (A, R) is complete for a logic S = (L, W , I) if and 

only if for all sets of formulae Γ ⊆ L and for all formulae α ∈ L, if Γ |=S α then Γ fC α. 

Example 19. A calculus using just the resolution inference rule described in Section 3.2.2 

is sound for first-order predicate, yet not complete. In order to be complete, such a 

calculus would also need the addition of the factorization inference rule, defined as: 

α1 ∨ ... ∨ αi ∨ ... ∨ αj ∨ ... ∨ αn 

θ(α1 ∨ ... ∨ αi ∨ ... ∨ αj−1 ∨ αj+1 ∨ ... ∨ αn) 

where θ = mgu(αi, αj ). 

Simply put, if a formula contains a disjunction of literals which can be unified, then 

remove one of them and apply the unifier to the formula. 

3.4 Search Control 

Automated theorem provers operate by performing search on formulae in a particular 

logic, in accordance with the inference rules and axioms specified by a calculus for that 

logic. Essentially, a theorem prover is searching for a sequence of inference rules which 

syntactically connect the input formulae to the axioms, the direction of which is de

termined by the specific calculus being used. Each step of the search is defined by a 

particular knowledge representation, and the search proceeds by transitioning between 
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knowledge representations until the goal can be identified in the current representation. 

A transition between knowledge representations is defined as the selection of an inference 

rule to perform, and also the component(s) of the current knowledge representation to 

perform this inference rule on. This choice is not a trivial one, as at any given knowledge 

representation, there may be many formulae to which inference rules can be applied, and 

further, there may be many different inference rules to choose from. The mechanism 

which makes this decision is known as the search control, which, in conjunction with a 

logic and a calculus, forms the final component of an automated theorem prover. 

Given that at each step of the search there are likely many possible formulae and 

applicable inference rules to choose from, the goal of the search control is to choose the 

transition which will result in a knowledge representation that is closest to one containing 

the goal of the search. The distance between any particular knowledge representation 

and one containing the goal of search can be measured as the number of transitions 

necessary to reach the goal representation from that particular knowledge representation. 

Optimally, the search control should choose transitions that result in the shortest path 

between the initial representation and the goal, in order to generate the shortest proof 

of the theorem, but also to minimize the amount of computational resources needed to 

perform the proof. Design of a search control for an automated theorem prover must then 

balance these two factors of optimization. If a particular search control performs lengthy 

and complex computations in order to determine the optimal transition to perform at 

each step of the search, it may indeed result in the shortest possible proof, yet it will 

likely be sub-optimal with regards to computational resource consumption. 

This balance is generally struck by implementing search controls for automated theo

rem provers as heuristic approximation methods based on the syntactic features of formu

lae. Given that, for a particular calculus, the number of inference rules is fixed, whereas 

the number of formulae to which it is applicable to a given knowledge representation is 
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quite variable, it is often the formulae selection component of search control which is the 

most difficult. In order to keep the complexity of the search control minimal, formulae 

are selected by measuring them according to a utility function which evaluates formulae 

according to syntactic features, such as length, occurances of particular symbols, depth of 

terms, etc.. By evaluating utility as a property of syntactic features, the computational 

complexity of performing this evaluation can be kept in roughly linear time with respect 

to the number of symbols occuring in a formula. 

Example 20. The weighted sum [Fuc96] utility function which counts the occurances of 

various classes of symbols and assigns weights to each in their summation. 

Let λ be a term or wff, V be the set of variable symbols and F the set of function 

symbols; the weighted sum w(λ) is defined as: 

⎧
 

1, if λ ∈ V ∪ C
 

2 +

 n 

 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 
i=1 w(ti), if λ ≡ f(t1, ..., tn) where f ∈ F ∪ FV 

w(λ) =
 1 + i
n 
=1 w(ti), if λ ≡ R(t1, ..., tn) where R ∈ P ∪ PV ∪ PI 
n w(αi), if λ ≡ *(α1, ..., αn) where * ∈ Ji=1 

w(α), if λ ≡ Dx1, ..., xn • α where D ∈ Q 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
 

By selecting terms according to a minimization criteria using w, this utility function 

biases towards selecting terms with more variables rather than function symbols, and 

formulae that are connected by junctors rather than predicates, given the difference in 

weights assigned to each case. 

The principle behind such heuristic utility functions is to imbue the search control 

with human knowledge of selection preferences while still maintaining a low computa

tional complexity. For the utility function w presented in Example 20 above, the human 
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knowledge being imparted is that smaller facts with fewer functions than variables are 

more general, and therefore more useful during deduction. The intent is that selecting 

facts with minimal utility values according to w will result in transitions that bring the 

knowledge representation closer to one containing the goal. However, heuristics such 

as these cannot be proven as always selecting the best transition to perform, and the 

applicability of a particular utility metric can only be established through experimental 

result. While it may be that, in general, selecting smaller formulae in accordance with w 

results in shorter proofs than selecting larger terms, there may also exists problems for 

which this selection criteria is quite inefficient, and in these cases selecting larger terms 

results in shorter proofs. 

Given that different search controls may evaluate the utility of possible transitions 

from any particular knowledge representation differently, differences in search controls 

will lead to different paths being taken through the search space. Assuming the under

lying calculus is sound, if a particular search control reaches a representation containing 

the goal, we can be assured that the theorem is in fact a semantic consequence. How

ever, even given a sound and complete calculus, it may be that certain search controls 

are unable to find syntactic derivations of theorems which are semantically provable, or 

even provable using another search control. This can occur if the search control violates 

the principle of fairness. Simply put, fairness dictates that every valid transition from 

a particular search state must at least have the possibility of being chosen. If certain 

transitions are outright denied the possibility of being chosen, it may be that, while the 

utility value generated by the heuristic metric being used makes this trasition appear to 

be a bad choice, it is actually a necessary transition on the path to the goal state. 

Finally, regardless of the search control being used, unless the theorem being proved 

is a member of the axioms to begin with, there exists a minimal sequence of transitions 

necessary to prove the theorem. This minimal path between the initial representation 
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and the goal is the optimal solution against which search controls may be compared to 

determine efficiency, and regardless of the search control being used, none of them can 

generate a proof of the theorem in fewer transitions. Necessarily, this minimal proof is 

bound to the particular calculus being used, and for a different calculus there may be a 

proof with a smaller number of transitions, but nonetheless for any calculus there exists 

a minimal proof for a given theorem. 
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Chapter 4 

Malicious Argumentation 

This chapter addresses the principal contribution of this thesis. In Section 4.1 the gen

eral pitfalls of resource bounded argumentation are discussed, focusing in particular on 

the potential exploitation of these bounds by malicious agents in an open multi-agent 

system. Section 4.2 then analyzes the decision procedures involved in argument valid

ity, acceptability evaluation and the dialogue game for possible exploitation based on 

resource bounds exhaustion. In order to maintain the scope of this thesis, a malicious 

agent strategy is described only for one of these decision procedures: the attack relation 

decision procedure computed during argument evaluation. Towards this end, Section 4.3 

discusses methods by which a malicious agent may alter the content of an argument in or

der to exhaust the resources allocated to its opponent’s attack relation decision procedure 

in order to manipulate the outcome of this decision procedure. Finally, in Section 4.4, 

an example of this malicious agent strategy is given for a hypothetical open multi-agent 

system that uses argumentation to manage contracted designs. 

4.1 Consequences of Resource Bounded Argumentation 

Agents often need to interact in order to achieve their goals. It may be that they require 

resources controlled by another agent, that they require the cooperation of another agent 

to complete a task, or that they require or wish to affect another agent’s internal state. 

Argumentation provides a means for this interaction to occur, often offering advantages 

over simple symbolic communication and more traditional approaches to these problems. 

Rather than simply transmitting solutions, argumentative agents include supporting rea
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sons behind these solutions, which allows these agents to engage in a complex reasoning 

process in order to find consensus despite conflicts in and between their knowledge bases. 

The advantages gained through the use of argumentation, however, are not without 

consequence. As discussed in Section 2.5, practical implementations of argumentation 

must impose resource bounds at several levels of the process, due to the intractability 

of procedures used by the argumentation process. These resource bounds result in non

monotonicity in computation, such that a different result could have emerged from the 

process if it were to have run longer. This consequence has been recognized for over a 

decade by the field of automated argumentation [Lou98], although few researchers have 

paid much attention to the implications of computational nonmonotonicity in argumen

tation. 

Due to the resource bounds imposed on various procedures involved in the argumen

tation process, it may be that an argument which has been evaluated by an agent as 

acceptable would be found unacceptable by that agent if greater resources were afforded 

to the process. If that agent were to be engaged in, for instance, a deliberation dialogue, 

this may have the consequence of the agent agreeing to perform actions it would otherwise 

have not agreed to perform, if given greater resources to perform argument evaluation 

with. While this is an unavoidable consequence of resource bounded argumentation, 

when implemented in a closed multi-agent system, fairness criteria can be used to ensure 

that agents have relatively equitable resource bounds [Lou98]. Such an approach does 

not avoid the consequences of resource bounded argumentation, but rather attempts to 

minimize it by “levelling the playing field”, so that each agent has a roughly equal chance 

of making incorrect decisions due to resource bounds exhaustion. 

However, fairness in resource consumption can only be achieved if the agents involved 

are willing to play fair. In a closed multi-agent system, achieving such fairness is a rela

tively trivial matter, as the agents involved are designed and controlled by a single entity, 
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and so resource consumption can be controlled locally. In an open multi-agent system, 

where agents may be designed and controlled by many different entities and executed 

on distributed and uncontrolled resources, achieving fairness in resource consumption is 

likely impossible. In such systems, resource consumption can only be controlled by pro

tocol rather than design, and protocol can only control those aspects of an agent that are 

externally verifiable, such as time. While imposing temporal limits on agent interactions 

can ensure that these interactions occur in a timely fashion, this cannot ensure equitable 

resource consumption, as agents may have great disparity in the computational resources 

available to them. 

In open multi-agent argumentation systems, then, some agents may have an advantage 

over others through access to greater computational resources. By affording greater 

resources to, for instance, their argument evaluation procedures, these agents may be 

able to make better decisions than agents with fewer resources. While this is not a 

particularly desirable consequence, it does not undermine the fundamental autonomy of 

the agents involved in the system, and so may be considered an acceptable limitation of 

open multi-agent argumentation systems. 

When dealing with open multi-agent systems, however, the possibility of malicious 

self-interested agents must be accounted for. While agents may need to cooperate, 

whereby cooperating agents work together in pursuit of a mutually beneficial goal that 

may not be achievable seperately, it is generally the case in open multi-agent systems 

that agents are primarily interested in achieving their individual goals. In pursuit of 

their goals, agents may attempt to strategically “bend the rules” to gain an advantage 

over other agents in the system. In contrast to closed multi-agent systems, open multi-

agent systems in particular must consider the possibility of such malicious behaviour, as 

the agents within the system are generally implemented by different entities, and so a 

high-level altruistic notion of “fair play” cannot be instilled in the agents by design. 
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In open multi-agent argumentation systems in which agents are resource bounded, 

then, resource disparity may be strategically exploited by malicious agents towards their 

own ends. By utilizing superior resources and sufficient knowledge of its opponent, a ma

licious agent may simulate its opponent’s decision procedures and construct an argument 

specifically designed to exhaust its opponent’s resource bounds. In this way, an argument 

which would be evaluated as unacceptable by the agent’s opponent, due to the opponent 

discovering a conflict between its knowledge base and the argument and therefore an 

attack against the argument, may be rendered acceptable by introducing superfluous 

complexity into the argument such that the opponent cannot deduce the conflict within 

its resource limitations. By manipulating the outcome of argument evaluation, a mali

cious agent may in turn affect the outcome of the dialogue game itself. If the agents are 

involved in deliberation regarding a course of action, this could result in the malicious 

agent controlling its opponent’s actions; if involved in negotiation of resource distribu

tion, the malicious agent could affect an unequal distribution of resources; if involved in 

persuasion, the malicious agent could cause its opponent to adopt particular knowledge 

it would otherwise not accept. Rather than resource exhaustion occuring happenstan

tially, as can occur in a closed multi-agent argumentation system, malicious agents in an 

open multi-agent argumentation system may exploit resource disparity to force resource 

exhaustion for their own ends. This clearly undermines the security of these systems, 

as such techniques would allow malicious agents to gain an undue amount of influence 

over other agents in the system, compromising the overall system goal in favour of the 

malicious agent’s individual goals. 
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4.2 Decision Procedures Susceptible to Malicious Argumentation
 

Malicious argumentation is made possible by agents needing to perform intractable, re

source bounded decision procedures on complex data constructed (at least partially) by 

other agents. Given knowledge of the procedure and resource bounds, the other agent 

can structure the data in such a way that resource exhaustion is gauranteed. For a given 

resource bounded decision procedure returning a boolean value, the case of resource ex

haustion represents a third possibility; neither the conditions for a positive or negative 

result have been reached, yet nonetheless the resources allocated to the procedure have 

been exhausted, and a result must be returned. It is therefore necessary for the proce

dure to map the case of resource exhaustion onto either a positive or negative result. A 

malicious agent may then exploit such a procedure by employing a resource exhaustion 

strategy if it desires the result that occurs in the case of resource exhaustion rather than 

the result that would occur if the procedure is able to terminate “naturally”. 

The use of complex formal logics for representing knowledge in argumentation sys

tems, and in particular, for representing exchanged knowledge, opens the door for mali

cious argumentation strategies based on resource bounds exhaustion. Decisions requiring 

intractible procedures such as deduction to be performed on complex knowledge received 

from an external source must be resource bounded, and are therefore susceptible to ma

licious exploitation based on resource bounds exhaustion. However, such malicious argu

mentation techniques are not limited to just those decision procedures that operate on 

complex logical formulae; any resource bounded intractable decision procedure involving 

external data may be susceptible to malicious argumentation. We herein examine proce

dures that may potentially be exploited by malicious agents, although this examination is 

by no means exhaustive. Further, we shall focus on the use of a resolution based theorem 

prover in the decision procedures which require deduction to be performed. However, 
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these techniques are not limited to just those argumentation systems using resolution 

based provers; any theorem prover is susceptible to resource exhaustion techniques, al

though the specific instantiation of these techniques will likely need to be tailored to 

exploit the particular inference rules and search control used by that prover. 

4.2.1 Argument Validity
 

Upon receiving an argument from another agent, before performing argument evaluation,
 

the argument should be tested for validity. In a closed multi-agent argumentation system,
 

this may not be necessary, as agents are designed by a single entity and therefore can be
 

designed to only transmit valid arguments. In open multi-agent argumentation systems,
 

however, the possibility that agents may employ invalid arguments requisites an initial
 

test of argument validity. The conditions of argument validity, as described in Section 2.3,
 

are defined for an argument (Φ, α) as follows:
 

1. The support set Φ is consistent: Φ  f ⊥ 

2. The conclusion α is a logical consequence of Φ: Φ f α 

3. Φ is a minimal set satisfying (1) and (2): there is no Φ ' ⊂ Φ such that Φ '  f ⊥ and 

Φ ' f α 

It should be immediatly apparent that the argument validity decision procedure is 

intractable; each of the three conditions comprising the procedure involve deduction, 

which is a known intractable procedure for all logics of interest. Given that determining 

argument validity is a component procedure of an agent’s locution decision procedure, 

as it must be performed on an incoming argument in order for the agent to decide which 

locution to respond with in the dialogue, the argument validity decision procedure must 

also be resource bounded. It is therefore possible that a malicious agent may target 
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this procedure for strategic resource exhaustion, with the aim of passing off an invalid 

argument as valid. 

As each of these conditions involves deciding deduction between sets of formulae, it 

is necessary to employ an automated theorem prover in their decision procedures. As 

it is necessary to impose resource limits on these decision procedures, the outcome of 

performing deduction will be one of three different possibilities: true, false, or resource 

exhaustion. However, the decision procedures themselves need to evaluate to a purely 

boolean value; it is therefore necessary for the procedure to handle the case of resource 

exhaustion in its deduction component by mapping it onto a boolean value. 

4.2.1.1 Consistency of Support 

Consider a decision procedure for the first condition, using a resolution-based theorem 

prover as described in Section 3.2.2 in a straightforward manner to test a set of formulae 

for consistency. That is to say, rather than operating the prover in a refutation-based 

manner to decide a consequence relation, the prover can be used to test for consistency 

by simply giving it a set of formulae from which it attempts to derive a contradiction. 

The simplest result is the case in which the set of formulae is inconsistent, and the prover 

is able to derive a contradiction within the resource limits, in which case the decision 

procedure can return the answer false. If resources are exhausted before a contradiction 

can be derived, it may be tempting to design the decision procedure to also answer false, 

in order to account for cases where the set of formulae is inconsistent yet the contradic

tion is outside the resource bounds. However, in the case where the set of formulae is 

consistent, it is necessary for the prover to exhaust all possible applications of inference 

rules. If all possible inference rule applications are exhausted before the prover’s resource 

bounds, the decision procedure can obviously answer true, yet in practical applications, 

the resource limits of the prover will likely be exhausted well before all possible inference 
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rule applications are exhausted. In order to avoid false positive identifications of incon

sistent sets of formulae, for practical purposes the case of resource exhaustion should 

also be mapped to true. However, while this enables the argumentation system to handle 

larger valid arguments, it also opens the possibility of malicious agents presenting large 

invalid arguments that, due to resource exhaustion, are evaluated as being valid. 

4.2.1.2 Logical Entailment of Conclusion 

The second condition of argument validity, that the argument’s conclusion must be a 

logical consequence of the support, is slightly different than the first, with respect to the 

case of resource exhaustion. Again, consider a decision procedure for this condition which 

decides the consequence relation between the support and conclusion using a resolution 

based theorem prover. As described in Section 3.2.2, the conclusion is negated, added 

to the support, and the resolution inference rule is applied until either a contradiction is 

derived or no further applications of the inference rule are possible. In the case where a 

contradiction is derived, the conclusion is a consequence of the support, and otherwise it is 

not. Unlike the first condition, in which applicable inference rule exhaustion is needed to 

establish validity, in the second condition inference rule exhaustion is needed to determine 

that the argument is invalid. In general, it is likely that an invalid argument will exhaust 

the resource limitations imposed on the decision procedure before all applicable inference 

rules are exhausted. However, mapping the case of resource exhaustion onto the result of 

false for the decision procedure will cause false negative results for large valid arguments, 

as it may be the case that a contradiction is present in the knowledge representation 

yet resources are exhausted before it can be derived. In order for the decision procedure 

to correctly handle valid arguments, the case of resource exhaustion should be mapped 

to true, yet this also allows the possibility of malicious agents constructing large invalid 

arguments which cause resource exhaustion before inference rule exhaustion, and are 
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thereby deemed valid by the decision procedure.
 

4.2.1.3 Minimality of Support 

The third condition of argument validity states that the support set should be minimal 

with respect to set inclusion while still fulfilling the previous two conditions. For practical 

purposes, this decision procedure is quite computationally expensive. In order to test this 

condition, it is necessary to iterate over elements of the powerset of the support set, and 

further, to test both of the above conditions on each of these elements. In the worst-case 

scenario, where there does not exist a subset of the support set for which conditions 1 

and 2 hold, it is necessary to iterate over all elements of the powerset of the support set, 

and so for a support set of size n the upper complexity bounds of this decision procedure 

is 2n times greater than the complexity of verifying the previous two conditions on the 

support set alone. Further, this worst-case scenario occurs in the case that the argument 

is valid with respect to this condition. The best-case complexity scenario occurs when 

this condition is violated, such that the first subset that is tested meets conditions 1 

and 2, and so the complexity of this decision procedure is minimally bounded by the 

comlexity of the decision procedures for conditions 1 and 2. With knowledge of the order 

in which these subsets are tested, it may be possible for a malicious agent to strategically 

manipulate the outcome of this resource bounded decision procedure in order to get 

another agent to evaluate an argument with a non-minimal support set as valid. 

Each of the component decision procedures of the argument validity decision proce

dure, when implemented in a practical argumentation system wherein resource limitations 

must be imposed on intractable procedures, may be susceptible to malicious argumen

tation based on exhausting resources in order to manipulate the outcome of decision 

procedures. While these decision procedures can be designed to map cases of resource 

exhaustion as identifying invalid arguments, this approach has the consequence of iden
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tifying large valid arguments as invalid. In trivial scenarios, it may be possible to keep 

all valid arguments within a reasonable size so as to avoid such cases. However, in prac

tical applications employing large knowledge bases and involving complex reasoning, it 

is not unreasonable to assume that large arguments for which the resources allocated to 

the argument validity decision procedure are insufficient might naturally occur in such 

systems. Therefore, restricting an argumentation system to only allow those arguments 

which can be validated within the allocated resources cannot be seen as an acceptable 

solution to the problems presented by malicious argumentation. 

On an aside, the minimality condition itself is rather questionable. Consider the sets 

of propositional logic formulae Φ = { A ∧ B } and Ψ = { A, B }. Both Φ f A and 

Ψ f A, however Φ satisfies the minimality condition whereas Ψ does not, as there exists 

a subset { A } ⊂ Ψ such that { A } f A. Given that Φ and Ψ are logically equivalent, 

it is clear then that the outcome of this condition can be manipulated by altering the 

syntactic form of an argument’s support set while retaining its semantic content. By 

framing minimality of the support set as property based on set operations, this condition 

is unable to capture the notion of truly minimal support; that is, the least amount of 

information necessary to support the argument’s conclusion. 

4.2.2 Argument Evaluation 

As discussed in Section 2.2.1, evaluating the justification status of an argument involves 

computing properties of the argument in relation to the argumentation framework, the 

specific properties being defined by the particular argumentation semantics being used. In 

order to perform this evaluation, the attack relations between arguments which comprise 

the argumentation framework must then be computed. In order to correctly evaluate 

the justification status of an argument, it is therefore necessary for an agent to generate 

all possible arguments from its knowledge base, and further to determine if there exist 
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attack relations between these arguments. 

While generating the set of all possible arguments from an agents knowledge base, 

as well as computing attack relations between these arguments, is quite an expensive 

and generally intractable procedure, it is possible for an agent to perform this compu

tation prior to entering an argumentative dialogue. Even if an agent were to perform 

this computation dynamically during the dialogue, in which case the procedure would 

need to be resource bounded, nonetheless the process of generating arguments from an 

agent’s knowledge base and computing attack relations between them is not susceptible 

to manipulation by a malicious agent, given that these computations are based entirely 

on the agent’s internal data. However, evaluating the justification status of an argument 

presented by another agent is susceptible to malicious manipulation, as the argument 

being evaluated originates from a source external to the agent. 

In order for an agent to evaluate an argument originating externally, the agent must 

determine the attack relations between that argument and the arguments in the set of all 

arguments AR constructable from the agent’s knowledge base, regardless of the particular 

argumentation semantics being used. Determining these attack relations requires the 

agent to compute conflict between component formulae of the argument being evaluated 

and the arguments in AR. As discussed in Section 2.3.1, deciding conflict generally 

involves performing deduction in the underlying logical language, which is generally an 

intractable and therefore resource bounded procedure when implemented in a practical 

argumentation system. Consider then a situation wherein an agent is presented with an 

argument α, which the agent must evaluate in order to determine whether to accept the 

argument or not. Assume the agent is using an arbitrary argumentation semantics to 

perform this evaluation with, for which there exists an argument β ∈ AR which attacks 

the argument α such that the outcome of the evaluation hinges on deciding the attack 

relation from β onto α; that is to say, the argument α is unacceptable under the particular 
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semantics just in case the agent is able to determine that β attacks α. The agent must 

then determine that there is a conflict between component formulae of α and β within the 

resource bounds imposed on the attack relation decision procedure in order to determine 

that the argument α is unacceptable. Given that we are assuming β attacks α, such a 

conflict does exist, yet nonetheless it is necessary for the agent to employ an automated 

reasoning component to derive the conflict between the component formulae of α and β. 

In the case where the resources allocated to the attack relation decision procedure are 

exhausted before this conflict can be derived, the agent must map this outcome onto a 

result of either true or false for the decision procedure. 

As with the argument validity decision procedure discussed above in Section 4.2.1, 

mapping the case of resource exhaustion to a result of either true or false for the attack 

relation decision procedure will have different consequences for the system. Consider 

an argumentation system which uses a resolution based theorem prover as described in 

Section 3.2.2 to determine conflict, where conflict is defined as a contradiction between 

the component formulae of the arguments involved. The first option to consider is the 

case of mapping resource exhaustion onto a result of true for the attack relation decision 

procedure; that is, if resources are exhausted when testing for an attack relation between 

two arguments, the procedure will report that an attack relation does exist between the 

arguments. As with the first validity condition discussed in Section 4.2.1, the resolution 

based prover is used to directly determine whether a contradiction is present, rather than 

being used in the standard refutation-based method of deciding a consequence relation. 

In the case when the arguments being tested do not attack one another, the prover 

must then exhaust all possible inference rule applications in order to determine that a 

contradiction is not present. For large enough arguments, it is likely that the resources 

allocated to the decision procedure will be exhausted before all possible inference rule 

applications are exhausted; mapping the case of resource exhaustion onto the result of 
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true for the attack relation decision procedure will then likely result in many false-positive 

identifications of attack relations between arguments. Not only will this have the effect 

of the agent evaluating many acceptable arguments as unacceptable, it has the further 

consequence of the agent responding with counter-attacks that do not in fact attack the 

argument they purport to. 

The attack relation decision procedure should therefore be implemented to map the 

case of resource exhaustion onto a result of false; that is, upon the resource limit being 

reached, the procedure should terminate with the result that there does not exist an 

attack relation between the arguments being tested. As with the decision procedures 

examined in Section 4.2.1, however, this opens the decision procedure up to the possi

bility of exploitation, whereby a malicious agent may construct an argument designed to 

exhaust the resource bounds of the evaluating agent’s attack relation decision procedure 

before an attack relation onto the argument can be found. In this way, a malicious agent 

may manipulate the outcome of its opponent’s argument evaluation procedure in order to 

render an unacceptable argument as acceptable, given the resource limitations imposed 

on the opponent’s argument evaluation procedure. 

4.2.3 The Dialogue Game 

The final decision procedures susceptible to malicious argumentation that shall be ex

amined herein relate to the decisions made at the level of the dialogue game. Of the five 

classes of dialogue game rules described in Section 2.4.1, two are particularly vulnerable 

to malicious argumentation: the class of commitment rules, and the termination rules. 

While it may be found that the classes of commencement, locution and combination rules 

are not only vulnerable but also advantageous to exploit through malicious argumenta

tion, we shall herein consider only the exploitation of the commitment and termination 

rules. 
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4.2.3.1 Commitment Rules 

The commitment rules of a dialogue game describe the conditions under which an agent 

may commit to a particular proposition. The propositions an agent has committed to 

are added to a public commitment store for that agent, which represents a subset of the 

agent’s knowledge base that the agent has made publicly available through the argu

ments it has presented during the dialogue. While the agent’s knowledge base may be 

inconsistent, it is necessary that the agent’s commitment store is consistent, in order to 

maintain consistency throughout the agent’s line of argumentation during the dialogue. 

Commitment rules then describe the means of updating the commitment store and main

taining consistency as agents present arguments, as well as allowing for deletions from 

the commitment store when an agent chooses to backtrack and retract previously as

serted arguments. While the commitment store is “public”, in a distributed multi-agent 

argumentation system, it is often necessary for each agent to maintain the set of commit

ments asserted by its opponent(s) in the argumentative dialogue. This requires agents to 

verify the consistency of new knowledge added to a commitment store when an opponent 

presents an argument, which in turn requires the agent to employ an automated theorem 

prover to test whether the contents of the commitment store entail a contradiction or 

not. 

As with the argument validity and acceptability evaluation decision procedures, we 

shall consider an agent making use of a resource bounded resolution based theorem prover 

to determine the consistency of a commitment store. Again, it is necessary to examine the 

consequences of mapping the case of resource exhaustion onto either a positive or negative 

result for the commitment store consistency decision procedure. Given that verifying the 

consistency of a commitment store involves attempting to derive a contradiction from a 

set of formulae, the resolution based prover may be used in a straightforward manner to 

test for a contradiction, rather than in a refutation-based manner to establish a conse
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quence relation. In the case that the commitment store being tested is in fact consistent, 

it is necessary for the prover to exhaust all possible inference rule applications; given a 

sizeable collection of commitments, it is likely that the resources allocated to this decision 

procedure will be exhausted before all possible inference rule applications. If the case of 

resource exhaustion is mapped onto a negative result for the consistency test, it is likely 

then that many consistent commitment stores will be reported as inconsistent due to 

resource exhaustion. To avoid incorrectly identifying inconsistency in a consistent com

mitment store, the case of resource exhaustion should therefore be mapped onto a positive 

result for the commitment store consistency decision procedure. As with the argument 

validity and acceptability evaluation decision procedures, however, this allows for the 

possibility of malicious manipulation of this decision procedure’s outcome; a malicious 

agent may construct an argument designed to exhaust its opponent’s commitment store 

consistency decision procedure before the opponent can determine that the argument 

contradicts previous arguments put forward by the malicious agent. A malicious agent 

may then successfully employ inconsistent lines of argumentation during the dialogue, 

through which it may manipulate the outcome of the dialogue game as a whole. 

4.2.3.2 Termination Rules 

The final decision procedure we shall consider as potentially susceptible to manipula

tion by a malicious agent relates to the termination rules of a dialogue game. Rather 

than considering how a malicious agent may manipulate the outcome of the termination 

condition decision procedures directly through strategic manipulation of the content of 

arguments, as the decision procedures described above have been analyzed, we shall in

stead consider how an agent may affect the outcome of the dialogue game as a whole by 

stratigically manipulating the “flow” of arguments during the dialogue. Argumentative 

dialogue games between agents are instantiated in order to affect a joint decision between 
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agents; as outlined in Table 2.1, an argumentative dialogue may be used to persuade an 

agent of a particular proposition, to negotiate the division of resources, to decide on a 

course of action, and so forth. The termination rules of a dialogue game define not only 

the point at which the dialogue ends, but also the outcome of the dialogue; the “winner” 

and “loser” of the interaction, if such terms are applicable, or the course of action to 

be taken, the effects on an agents knowledge, the division of resources, or whatever the 

purpose of the dialogue may be. Given that such a dialogue game is instantiated to 

perform a decision, the dialogue itself must be resource bounded, so that actions based 

on the outcome of the dialogue game may occur in a timely fashion. These resource 

bounds are generally implemented as a termination rule for the dialogue game, and as 

with the decision procedures performed by agents during their turns, the case of resource 

exhaustion must be mapped onto a particular result for the dialogue game. 

Unlike the decision procedures analyed so far, the outcome of the dialogue game in the 

case of resource exhaustion is not as clear, but rather must be based on the particulars of 

the system and dialogue game type being used. However, given that agents involved in 

the dialogue game must be aware of the termination rules of the game, and how the case of 

resource exhaustion is handled, strategic manipulation of the dialogue game is nonetheless 

possible. Whereas the decision procedures used in argument validity and acceptability 

evaluation could be exploited through resource exhaustion by adding formulae to the 

content of arguments, the decision procedure based on the dialogue may be exploited 

by adding arguments to the content of the dialogue. For instance, if a malicious agent 

finds itself in a winning position which could be overturned by its opponent introducing a 

particular argument, the malicious agent may employ delay tactics to draw its opponent’s 

attention away from that particular line of argumentation until the resources allocated to 

the dialogue are exhausted. If a malicious agent finds itself unable to win a dialogue game, 

it may construct superfluous arguments designed to delay its opponent from finding a 
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winning argument, and thus draw a stalemate from the interaction rather than a loss. 

While these techniques are likely more difficult to implement than the resource exhaustion 

strategies described above which target the automated theorem proving component of 

an argumentative agent, it is nonetheless possible for a malicious agent to exploit the 

rules of a dialogue game in order to manipulate its outcome by introducing superfluous 

arguments designed to exhaust the resources allocated by the termination conditions of 

the dialogue game. 

4.3 Strategically Manipulating Arguments 

An agent employs a malicious argumentation strategy when it desires to manipulate the 

outcome of one of its opponent’s decision procedures for a given argument or line of argu

mentation. A malicious resource exhaustion strategy can be performed by an agent when 

the decision procedure being targeted returns the desired result in the case of resource 

exhaustion. To accomplish this, the agent modifies the content of the argument or line 

of argumentation by adding superfluous information designed to exhaust the decision 

procedure’s resource bounds, while still retaining the original content of the argument. 

This is a notably distinct case from lying, as when an agent lies, it misrepresents infor

mation, such as reporting that it believes propositions it does not, or plans to perform 

actions it cannot or has no intention to. In a malicious resource exhaustion strategy, the 

agent does not violate the felicity conditions of the locution being performed; rather, the 

agent manipulates how its opponent interprets the information by modifying the content 

so that a different result is achieved than what would have occured if the opponent had 

sufficient time to completely analyze the information. 

We shall herein focus on techniques for exploiting a particular decision procedure: the 

attack relation decision procedure used by the argument evaluation decision procedure. 
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By manipulating the outcome of the attack relation decision procedure, a malicious agent 

may render a particular argument acceptable to its opponent which would be found un

acceptable if the opponent had sufficient resources to thoroughly examine the argument. 

Given that exploiting the attack relation decision procedure involves exhausting the re

source bounds of an automated theorem prover as it searches for a contradiction in a set 

of formulae, the techniques described here could also be used to exploit other decision 

procedures which make use of an automated theorem prover for similar purposes, such as 

the argument validity decision procedures discussed in Section 4.2.1 or the commitment 

store rules of the dialogue game discussed in Section 4.2.3. Nonetheless, in order to main

tain the scope of this thesis, the discussion of strategically manipulating arguments for 

resource bounds exhaustion based exploitation shall be limited to just the attack relation 

decision procedure. Towards this end, two techniques will be described in the following 

subsections: implication chaining, by which arbitrarily large consequence relations can 

be constructed, and tautology injection, which makes use of arbitrarily large tautologies 

to exhaust a theorem provers resources. These techniques will then be put to use in an 

example of a malicious argumentation scenario in Section 4.4. 

4.3.1 A Resource Bounded Undercut Relation 

For the purpose of the argument manipulation strategies described in Section 4.3.2 and 

Section 4.3.3, as well as the malicious argumentation example scenario discussed in Sec

tion 4.4, we shall focus on resource bounded exploitation of a particular attack relation. 

The attack relation that will be used in these sections is the undercut attack relation, 

based on those described in Section 2.3.1. Further, the attack relation needs to be de

scribed as a resource limited decision procedure. Rather than strictly limiting time or 

computational cycles, for simplicity’s sake we shall instead limit the number of inference 

steps performed by the automated reasoning component used to decide syntactic conse
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quence in the argumentation system’s attack relation decision procedure, similar to the 

method used in [Lou98]. Towards this end, the symbol fk will be used to denote deduc

tion limited to k inference steps; that is, if the theorem prover being used can determine 

that φ f ψ in k or less inference steps using a given search control, then φ fk ψ, otherwise 

φ  fk ψ. 

The resource limited undercut attack relation used herein can then be described 

formally as: 

Definition. An argument (Φ, α) is an undercutk of an argument (Ψ, β) iff Ψ∪{ α } fk ⊥. 

4.3.2 Implication Chaining 

The goal of the argument manipulation techniques described herein is to modify the 

contents of a given argument such that the interpretation of the symbols present in the 

original argument remains the same yet the resources required to decide a certain property 

of the argument may be arbitrarily increased. It is necessary that these techniques 

are scalable, as a particular malicious argument needs to be tailored to the specific 

resource bounds of the opponent’s decision procedure. The first of such techniques we 

shall examine makes use of chains of material consequence relations to arbitrarily increase 

the resources needed to detect a contradiction when using a resolution based automated 

theorem prover. 

The material consequence relation P → Q, where P and Q are well-formed formulae 

in a logical language, is interpreted for a boolean logic as “if P then Q”; that is, if P is 

true, then Q must also be true, yet if P is false, Q may be either true or false. The “P ” 

side of the relation is referred to as the antecedent, and the “Q” side as the consequent 

of the material consequence relation. Any given well-formed formula of the language can 

be modified without changing the interpretation of the symbols involved in the original 

formula by constructing a new formula in which the original formula is the consequent 
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of a material implication with a true antecedent. 

Example 21. Consider the initial formula Q in boolean propositional logic; that is, an 

assertion that Q is true. 

A new formula can then be constructed by re-writing Q to be the consequent of a 

material consequence relation with a true antecedent; e.g: P ∧ (P → Q). 

The interpretation of this new formula is different from the original, specifically be

cause the new symbol P has been added, which must also be interpreted. However, the 

symbol Q nonetheless has the same interpretation in the new formula P ∧ (P → Q) as it 

did in the original formula Q. 

The purpose of such a manipulation, as stated above, is to increase the resources 

needed to determine particular properties of the formulae when using an automated 

theorem prover. The property we are interested in here is a contradiction, by way of using 

a resolution based automated theorem prover. The technique of re-writing a formula to 

be the consequent of a true antecedent can be used to increase resource consumption by 

a resolution based prover, as can be seen in the following example. 

Example 22. Consider a set of formulae { Q, ¬Q }, which is quite obviously contra

dictory. Through the application of a single resolution inference rule, this contradiction 

can be found: 
Q, ¬Q 

D 
Now consider a modification of the formula Q in this set, as described above, to be 

P ∧ (P → Q). Given that we’re dealing with a resolution based prover, this new formula 

needs to be converted into clauses as follows: { P, ¬P ∨ Q }. 

The new set of formulae to be tested for contradiction is then: { P, ¬P ∨ Q, ¬Q } 

In order to establish a contradiction now, two inference rules need to be applied to 

the set of formulae: 
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P, ¬P ∨ Q
1. Resolution: , Result: { P, ¬P ∨ Q, ¬Q, Q }

Q 
Q, ¬Q

2. Resolution: , Result: { P, ¬P ∨ Q, ¬Q, Q, D }
D 

This technique can be arbitrarily scaled to require a specific number of resolution 

inference rules to be applied before the contradiction can be found. For instance, to force 

the theorem prover to use n resolution inference rules to establish a contradiction, the 

set of formulae can be re-written as: 

{ P1, P1 → P2, ..., Pn−1 → Q, ¬Q } 

In order to use this technique to exploit the resource bounds of the attack relation 

decision procedure, a malicious agent needs to know the resource bound imposed on this 

procedure by its opponent, as well as the component of its argument which contradicts 

an element of the opponent’s knowledge, which will form the basis for the attack relation. 

Example 23. Consider an argument (Φ, α) = ({ P, P → Q }, Q) of agent a1, which is 

undercut only by the argument (Ψ, β) = ({ ¬P }, ¬P ) of agent a2. 

Agent a1 will play the role of the malicious agent in this scenario, and a2 will be 

the opponent. If presented with the argument (Φ, α), agent a2 would respond with the 

attacking argument (Ψ, β). We shall assume that a2’s attack relation decision procedure 

(in this case, the undercut relation decision procedure described in Section 4.3.1 above) is 

limited to k inference steps, where k is sufficient to decide that (Ψ, β) undercutk (Φ, α). 

If the malicious agent a1 desires that a2 does not attack the argument (Φ, α), it can 

employ an implication chaining technique to exhaust a2’s resources before a2 can discover 

the contradiction in Φ ∪ β. Agent a1 can then re-write (Φ, α) as follows: 

(Φ ' , α) = ({ P1, P1 → P2, ..., Pk → P, P → Q }, Q) 

It will then take a2 a total of k + 1 inference steps to determine the contradiction 

in Φ ' ∪ β. Given that a2 has only k inference steps allocated to the undercut relation 
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decision procedure, it will have exhausted its resources before it can determine that 

(Ψ, β) undercutk (Φ ' , α). Assuming that a2 is mapping the case of resource exhaustion 

as discussed in Section 4.2.2, agent a2 will then accept the argument (Φ ' , α), as it cannot 

find an attack against the argument. 

Note that it isn’t necessary for a malicious agent to know the exact value of k used 

by its opponent. It would be enough for the agent to approximate a value for k that 

it can reasonably assume is far past the actual value of k. If the agent’s opponent is 

using commercially available software, this may be as simple as using default or maximal 

values for that software. Further, it may be possible for a malicious agent to perform 

this approximation through a learning process. A number of trivial arguments could be 

used to test different values for k until a reasonable approximation can be formed, which 

can then be used in a malicious argumentation strategy to manipulate the opponent’s 

decision procedure(s) for an important argument. 

4.3.3 Tautology Injection 

The next argument manipulation strategy we shall examine makes use of tautologies to 

exhaust the resources of an opponent’s attack relation decision procedure. A tautology 

is a formula in a boolean logic which is interpreted as true under all interpretations. 

Simple tautologies are formulae such as P ∨ ¬P , which states that P is either true or 

false; under a boolean logic, it is impossible for a wff to be neither true nor false, and 

so this formula evaluates to true under all possible assignments of truth-values to P . 

This example tautology is quite simple, however it can be easily modified to introduce 

superfluous complexity; consider that the propositional variable P in the formula can 

be replaced by any well-formed formula of the logic and the resulting formula will still 

be tautological. Further, there are many tautologies of much greater complexity than 

P ∨ ¬P , such as the formula ((P → Q) ∧ (R → S)) → ((P ∨ R) → (Q ∨ S)). By 
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composing such tautologies with other formulae, as well as conjoining them with other 

tautologies, one can create increasingly complex formulae which nonetheless will always 

be evaluated as true under all interpretations. 

Similar to the method of implication chaining described above in Section 4.3.2, tau

tology injection can be used to increase the resources needed to establish a particular 

contradiction by making the formula which contradicts the opponents knowledge the 

consequent of a material consequence relation with a tautology as the antecedent. The 

opponent’s automated theorem proving component must then establish the truth of the 

antecedent (the tautology) before it can establish the truth of the consequent. 

Example 24. The formula Q in propositional logic can be re-written as T → Q, where 

T is any tautology. For instance: 

• (P ∨ ¬P ) → Q 

• (P ↔ (P ∧ P )) → Q 

• ((R ↔ S) ↔ (¬R ↔ ¬S)) → Q 

Each of these formulae is logically equivalent to Q, however when combined with the 

formula ¬Q, a theorem prover will require greater resources to establish the contradiction 

than it would to determine {Q, ¬Q} f ⊥. 

Example 25. Consider the formula (P ∨¬P ) → Q, which can be written in clausal form 

as { ¬P ∨ Q, P ∨ Q }. 

Using a resolution based theorem prover, it will take three inference steps to determine 

that { ¬P ∨ Q, P ∨ Q, ¬Q } f ⊥ : 

¬P ∨ Q, P ∨ Q
1. Resolution: , Result: { ¬P ∨ Q, P ∨ Q, ¬Q, Q ∨ Q }

Q ∨ Q 
Q ∨ Q

2. Factorization: , Result: { ¬P ∨ Q, P ∨ Q, ¬Q, Q ∨ Q, Q }
Q 
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¬Q, Q
3. Resolution: , Result: { ¬P, P ∨ Q, ¬Q, Q ∨ Q, Q, D }

D 

Given that { Q, ¬Q } f ⊥ can be established in a single inference step, the injec

tion of a simple tautology is able to increase the resource consumption of the theorem 

prover. Tautologies of arbitrary complexity can be constructed to exhaust specific re

source bounds using a number of simple methods, such as conjoining tautologies in the 

antecedent, or replacing symbols in the tautologies with more complex formulae. 

Example 26. The tautology used in Example 25 can be scaled by conjoining multiple 

instances of the tautology, albeit with different symbols. For instance: 

((P1 ∨ ¬P1) ∧ ... ∧ (Pn ∨ ¬Pn)) → Q 

The general clausal form for the above formula is rather unwieldy, and so we shall 

examine the case of determining a contradiction between this formula for n = 2 and 

the formula Q, in order to compare to the case of n = 1 given in Example 25. For 

((P1 ∨ ¬P1) ∧ (P2 ∨ ¬P2)) → Q then, the clausal form is: 

Δ = { Q ∨ ¬P1 ∨ ¬P2, Q ∨ ¬P1 ∨ P2, Q ∨ P1 ∨ ¬P2, Q ∨ P1 ∨ P2 } 

Let Δ0 = Δ ∪ { ¬Q }. In order to establish that Δ0 f ⊥ using a resolution based 

theorem prover, the following inference steps are performed: 

Q ∨ P1 ∨ P2, Q ∨ ¬P1 ∨ P2
1. Resolution: , Result: Δ1 = Δ0 ∪ { Q ∨ Q ∨ P2 ∨ P2 }

Q ∨ Q ∨ P2 ∨ P2 

Q ∨ Q ∨ P2 ∨ P2
2. Factorization: , Result: Δ2 = Δ1 ∪ { Q ∨ P2 ∨ P2 }

Q ∨ P2 ∨ P2 

Q ∨ P2 ∨ P2
3. Factorization: , Result: Δ3 = Δ2 ∪ { Q ∨ P2 }

Q ∨ P2 

Q ∨ P2, Q ∨ P1 ∨ ¬P2
4. Resolution: , Result: Δ4 = Δ3 ∪ { Q ∨ Q ∨ P1 }

Q ∨ Q ∨ P1 

Q ∨ Q ∨ P1
5. Factorization: , Result: Δ5 = Δ4 ∪ { Q ∨ P1 }

Q ∨ P1 
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Q ∨ P1, Q ∨ ¬P1 ∨ ¬P2
6. Resolution: , Result: Δ6 = Δ5 ∪ { Q ∨ Q ∨ ¬P2 }

Q ∨ Q ∨ ¬P2 

Q ∨ Q ∨ ¬P2
7. Factorization: , Result: Δ7 = Δ6 ∪ { Q ∨ ¬P2 }

Q ∨ ¬P2 

Q ∨ ¬P2, Q ∨ P2
8. Resolution: , Result: Δ8 = Δ7 ∪ { Q ∨ Q }

Q ∨ Q 
Q ∨ Q

9. Factorization: , Result: Δ9 = Δ8 ∪ { Q }
Q 

Q, ¬Q
10. Resolution: , Result: Δ10 = Δ9 ∪ { D }

D 

The choice of n for a particular resource bound k is not as clear as with the method of 

implication chaining described in Section 4.3.2, given the growth pattern of inference rules 

needed to determine a contradiction using n conjoined tautologies of the form Pi ∨ ¬Pi 

in the antecedent of the constructed consequence relation. Nonetheless, for any given 

resource bound k, it is possible to find a value for n such that the opponent’s theorem 

prover cannot determine the existence of a contradiction within k inference steps. 

4.4 Example of Malicious Argumentation 

We shall now examine the use of malicious argumentation in a more complete example 

scenario. After a description of the system, a “normal” interaction scenario is consid

ered first, wherein an agent presents an unacceptable argument to its opponent, and the 

opponent is able to discover and respond with an attacking argument. Modifications 

to the initial argument’s support are then considered, using the methods of implication 

chaining and tautology injection described in Section 4.3 to exhaust the opponent’s re

source bounds before the attacking argument can be discovered. In this way, the initially 

unacceptable argument is rendered acceptable to the opponent, while still retaining the 

initial semantic content of the argument. 
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4.4.1 Example System 

In this example, a company uses a task postings board to list requests for certain com

ponents to be designed and constructed by outside contractors. The items listed on this 

board contain the functional requirements of the components to be designed, written as 

formal specifications in first-order logic, and possibly other requirements, also in first-

order logic. A manager agent am is then responsible for testing the acceptability of design 

arguments proposed by a contractor agent ac, responding with an attacking argument if 

the design is found to be unacceptable. 

4.4.1.1 Example Semantics 

The specifications, as well as the design proposed by contractor agents, make use of a 

shared catalogue language Σcat based on a common ontology of symbols and concepts Γcat, 

which describes myriad parts, properties and functionalities available to the company and 

their contractors. Along with the design specification Θspec ⊂ Σcat, the company also 

publishes a set of conditions Θint ⊂ Σcat, which describes internal corporate policies or 

other knowledge apart from the design specifications that may be used to attack design 

proposal arguments. Designs proposed by contractors then must have a conclusion that 

satisfies Θspec, and be acceptable with relation to Θspec ∪ Θint. 

The following predicates are used by am to describe design specifications and other 

internal conditions, and also by ac in the design proposal. 

UseC(X) : design uses component X 

HasP (X, Y ) : component X has property Y 

P rovF (X, Y ) : component X provides function Y 

Conn(X, Y ) : component X connected to component Y 
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4.4.1.2 Testing Acceptability 

Rather than describing a full dialogue between the agents, we shall focus here on the 

initial assert locution in which ac proposes a design argument (Φ, α), and am tests the 

acceptability of this argument, responding with an attacking argument if one is found. 

Due to resource constraints, am will impose an inference count limit k on the process 

of determining argument acceptance, as described in Section 2.5; we do not, however, 

consider any resource constraints placed on ac, as we are concerned here only with the 

process of resource bound acceptance used by am which may be exploited by malicious 

agents. 

In order to determine the acceptability of (Φ, α) with respect to its internal knowledge 

Θint and the design specifications Θspec, agent am will attempt to construct an argument 

(Ψ, β) from the formulae in Θspec ∪ Θint such that (Ψ, β) attacks (Φ, α). The resource 

bounded undercut relation described in Section 4.3.1, limited to k inference steps, will be 

used for the attacks relation in this example. Agent am will then need to test the resource 

bounded attack relation decision procedure (Ψ, β) undercutk (Φ, α). To accomplish this, 

am will need to employ its automated reasoner to determine whether there exists (Ψ, β) 

in A(Θspec ∪ Θint) such that Φ ∪ {β} fk ⊥. While argument evaluation as described in 

Section 2.2.1 is more complicated than simply testing a single attack relation, for the 

sake of brevity we focus on a single attack relation decision, which will nonetheless be a 

component of argument evaluation. In the case that an argument (Ψ, β) cannot be found 

such that (Ψ, β) undercutk (Φ, α), then (Φ, α) will be considered acceptable. 

4.4.1.3 Automated Reasoning Component 

In this example, we make use of first-order predicate logic for the underlying logic of the 

argumentation system, similar to the approaches found in [PSJ98, BH05, Alo04]. For 

experimental purposes, we make use of the Prover9 automated theorem prover [McC]. 
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While Prover9 allows the use of several variants of the resolution calculus, to keep our 

example simple, we configure it to use only the binary resolution inference rule (and 

factorization). Further, we have modified the Prover9 system to impose a limit on the 

number of inference steps performed during the search for a proof, which we use as the 

resource limit of the deduction component. 

4.4.2 “Normal” Interaction Scenario 

In this example, the manager agent am has posted a request for a design of a component 

which can produce fixed amplitude waveforms of 20mA at a frequency of 30Hz, repre

sented by amp20mA and genFreq30Hz respectively. This is represented in the formal 

semantics defined above as : 

∃x : P rovF (x, genF req30Hz) ∧ HasP (x, amp20mA). (C1) 

4.4.2.1 The Design Proposal 

An external contractor agent ac analyzes this request and uses its knowledge of various 

electric components to construct a design which incorporates the WG3000 wave gen

erator. However, its knowledge of this component specifies that the WG3000 must be 

connected to an adequate power supply in order to function, which is represented as: 

HasP (wg3000, amp20mA). (C2) 

∃x : (UseC(wg3000) ∧ Conn(x, wg3000) ∧ P rovF (x, power20mA)) 
(C3) 

→ P rovF (x, genF req30Hz). 

Agent ac also has knowledge of a specific power supply which can be used for this 

purpose, the PSU423, which provides the necessary 20mA output required for use with 

the WG3000. 

UseC(psu423) → P rovF (psu423, power20mA). (C4) 
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Along with the specifications of the components described in C2, ..., C4, agent ac must 

include design specifications on their use and interconnections, expressed as: 

UseC(wg3000) ∧ UseC(psu423) ∧ Conn(psu423, wg3000). (C5) 

The design is expressed by agent ac as the argument (Φ, α) = ({C2, ..., C5}, C1)1 . 

Upon receipt of the proposal from ac, agent am can verify the argument’s validity as 

described in Section 2.3, by testing that C2 ∧ ... ∧ C5 f C1 using its automated reasoner, 

as well as the conditions that C2 ∧ ...∧C5  f ⊥ and ¬∃S ' ⊂ {C2, ..., C5} : S '  f ⊥∧S ' f C1. 

4.4.2.2 The Attacking Argument
 

However, let us assume that am has a further condition in Θint which specifies that the
 

component must be compliant with the Restriction of Hazardous Substances (RoHS)
 

directive, which agent ac has not taken into account in its design:
 

∀x : UseC(x) ↔ HasP (x, rohsCompliant). (C6) 

Included in this directive is a restriction on the use of various toxic substances, in

cluding the use of lead: 

∀x : HasP (x, rohsCompliant) ↔ 

¬(HasP (x, containsLead) ∨ HasP (x, containsCadmium) (C7) 

∨HasP (x, containsHexavalentChromium)). 

Further, am has the knowledge that the PSU423 power supply unit contains lead: 

HasP (psu423, containsLead). (C8) 

The clauses C6, C7 and C8 can then be used as support for the conclusion: 

¬UseC(psu423). (C9) 

1Formulae are entered into the theorem prover in the order they appear here 



81 

This can be formed into the argument (Ψ, β) = ({C6, C7, C8}, C9). Through the use 

of its automated reasoner, am can determine that Φ ∪ {β} f ⊥ due to the conflicting 

clauses UseC(psu423) and ¬UseC(psu423), and so the argument (Ψ, β) attacks the 

argument (Φ, α). To test this example, the Prover9 automated theorem prover [McC] 

was configured to use the standard simple weighted term selection search control. In this 

configuration, it took the prover a single inference step to prove that Φ∪{β} f ⊥, and so 

the prover could determine that Φ∪{β} fk ⊥, and therefore that (Ψ, β) undercutk (Φ, α), 

for any k ≥ 1. Agent am could then respond to ac with the attacking argument (Ψ, β). 

The Prover9 code for this example can be found in Appendix A.1, including statistics on 

the theorem prover’s execution during the search for this proof. 

4.4.3 Malicious Argumentation Scenario 

Knowing the attack to the argument (Φ, α) described above, ac could make use of a 

resource exhaustion strategy to overwhelm agent am’s deductive reasoning capacity before 

am can determine that its argument (Ψ, β) attacks (Φ, α). This would be of advantage to 

ac if, for example, it has a surplus of PSU423 units and needs to get rid of them. Using 

further knowledge of the automated reasoner used by am, such as the resource bounds 

and the search control, ac can modify the argument (Φ, α) so that am will not find the 

contradiction within the given inference limit, in which case am will accept the argument 

due to the mapping of the case of resource bounds exhaustion as described above in 

Section 4.2.2. 

4.4.3.1 Implication Chaining 

The malicious argumentation technique of implication chaining described in Section 4.3.2 

can be used by agent ac to construct a new argument (Φ ' , α). This can be accomplished 

by modifying the clause C5 to make the contradicting term UseC(psu423) the consequent 

of an implication chain with a true antecedent so that it cannot be resolved with the term 
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¬UseC(psu423) before the inference limit k is reached. An example of this would be to 

create a sequence of fake parts, whose use implies the use of the next fake part in the 

sequence, and finally the part in question. The clause C5 can then be rewritten as: 

UseC(wg3000) ∧ UseC(fake1)
 

∧ UseC(fake1) → UseC(fake2)
 

∧... ∧ UseC(faken−1) → UseC(faken) (C5 
n' 

)
 

∧ UseC(faken) → UseC(psu423)
 

∧ Conn(psu423, wg3000).
 

Note that this modification of the argument’s support still does not violate the mini

mality criteria of arguments presented in Section 2.3, as the removal of any one of these 

added clauses would violate the condition that Φ f α. 

To test the attack relation between the new argument (Φ ' , α) and the attacking ar

gument (Ψ, β), agent am’s resource bounded automated reasoner is used to determine: 

{C2, ..., C4, C5 
n' } ∪ {¬UseC(psu423)} fk ⊥ (P1) 

If the resource limit k is exhausted before P1 can be proven by resolving the terms 

UseC(psu423) and ¬UseC(psu423) to a contradiction, then it cannot be established that 

(Ψ, β)attacksk(Φ ' , α)). To demonstrate the use of this method of resource exhaustion, 

'
Prover9 is used to test P1 with incremental values of k. Values of n for the clause C5 

n

were then found which exceed k inferences before P1 is proven. The results of this can be 

found in Table 4.1, and the Prover9 code for this example can be found in Appendix A.2, 

along with more statistics from the execution of the prover on this code. 

4.4.3.2 Tautology Injection 

The tautology injection technique described in Section 4.3.3 can also be used to exhaust 

the resources allocated to agent am’s attack relation decision procedure. A new argument 

(Φ '' , α) can be constructed by agent ac, in which the term UseC(psu433) in modified to 
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inference limit (k) chain length (n) 
100 
200 
300 
400 
500 

49 
99 
149 
199 
249 

Table 4.1: Results for Implication Chains 

be the consequent of a consequence relation with a large tautology as the antecedent. By 

conjoining sufficient repetitions of a single tautology, agent am will be unable to determine 

that (Ψ, β) undercutk (Φ '' , α). To accomplish this, the clause C5 in the example can then 

be rewritten as: 

UseC(wg3000)∧ 

((((a1 → b1) ∧ (b1 → c1)) → (a1 → c1)) 

(Cn∧...∧ 5 
'' 
) 

(((an → bn) ∧ (bn → cn)) → (an → cn))) 

→ UseC(psu423) ∧ Conn(psu423, wg3000). 

As with the method of implication chaining described above, the Prover9 automated 

theorem prover is used to test the attack relation between the new argument (Φ '' , α) and 

agent am’s attacking argument (Ψ, β) by evaluating the following condition: 

{C2, ..., C4, C
n '' } ∪ {¬UseC(psu423)} fk ⊥ (P2)5 

The results of evaluating P2 for different values of k are shown in Table 4.2, where 

a value of n has been found such that the resources k allocated to the procedure are 

exhausted before P2 can be proven. The Prover9 code for this example can be found in 

Appendix A.3, along with statistics for the execution of the prover on this code. 
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inference limit (k) repetitions (n) 
100 
200 
300 
400 
500 

3 
3 
3 
4 
4 

Table 4.2: Results for Tautology Injection
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Chapter 5 

Defense Strategies 

After having examined malicious strategies agents may employ in an open multi-agent 

argumentation system, we now turn to considerations of how such strategies may be 

defended against. In Section 5.1, modifications are described to incorporate defense 

strategies into the general argumentative agent model. Section 5.2 then investigates an 

initial defense strategy using pattern matching to detect instances of malicious argumen

tation strategies, particularily those described in Section 4.3. Other potential defense 

strategies are then briefly described in Section 5.3, followed by a discussion of the general 

principles of defense against malicious argumentation in Section 5.4. 

5.1 Modifying the Agent Model 

In this section, modifications to the argumentation model described in Chapter 2 are 

considered, with the intention of incorporating defense strategies against malicious argu

mentation. Malicious argumentation strategies targetting different decision procedures 

in the argumentation model, as described in Section 4.2, will require defense strategies to 

be implemented in different components of an argumentative agent. In order to maintain 

the scope of this thesis, given that the investigation into malicious strategies in Chap

ter 4 focused primarily on the argument evaluation decision procedure, so too will our 

discussion of defense strategies. 

In general, a defense strategy for a particular decision procedure can be implemented 

as a sort of “wrapper” for the procedure. That is to say, the defense strategy may perform 

pre-computations on the input to the procedure before the decision procedure itself is 
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executed, and further there may be post-computations on the output of the decision 

procedure. It may also be necessary to modify the decision procedure itself so that the 

output is richer; that is, rather than a simply boolean result, the procedure could be 

modified to return additional information regarding its execution, with the intention of 

providing the defense strategy’s post-computation with greater information regarding the 

execution of the procedure. While the wrapper model may not always be an applicable 

method of implementing a defense strategy against malicious argumentation, in general 

it is a good way to conceptualize the role of defense in the general argumentative agent 

model. 

If the purpose of a defense wrapper for an agent’s decision procedure is to detect 

instances of malicious argumentation strategies targetting that decision procedure, it 

must also be considered how the defense strategy will respond to a positive detection of 

a malicious strategy. In the case that a malicious strategy is not detected by the defense 

wrapper, the decision procedure it defends may be executed normally. When a malicious 

strategy is identified by the defense wrapper, the output of the procedure will necessarily 

need to be modified. However, this may not be as simple as inverting the output of 

the decision procedure. For instance, consider a defense strategy wrapping the attack 

relation decision procedure used during the argument evaluation procedure. In the case 

when a malicious strategy is identified by the defense wrapper, yet the attack relation 

decision procedure nonetheless does not identify an attack relation between the given 

arguments, it still cannot be decided that an attack between the arguments does in fact 

exist. To respond with a counter-attack on the basis that the argument being tested has 

been identified as implementing a malicious strategy may break the felicity condition of 

the counter-attack performative. It may be that if sufficient resources were available to 

complete the decision procedure, an attack relation would still not be found. It may be 

that the malicious strategy was intended to exhaust the resources of a different attack 
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relation decision, and not the particular one being tested. Nonetheless, if the defense 

strategy identifies a malicious strategy being employed in a particular argument, this 

result cannot be ignored. 

Incorporating defense strategies into the argumentation model cannot therefore be as 

simple as implementing defense wrappers designed to detect instances of malicious argu

mentation strategies. These wrappers may be used to detect malicious argumentation, 

yet the model must also be modified to incorporate means of reacting to the detection 

of malicious argumentation. Towards this end, the dialogue game may be modified by 

adding additional performatives relating to detection of malicious argumentation strate

gies. Furthermore, the termination conditions of the dialogue may be conditional on the 

outcome of the defense wrappers; an agent may simply terminate the interaction in the 

case that it detects its opponent employing a malicious argumentation strategy. The 

agent’s logic, that is, the logic of justification, may also be modified to incorporate iden

tification of malicious arguments. These topics will be discussed further in Section 5.3, 

albeit in no great depth, as a proper investigation of these topics requisites a research 

project of greater scope than is afforded by this thesis. The primary focus of this chapter 

will be to investigate a defense strategy for identifying a particular malicious argumenta

tion strategy targeting the attack relation decision procedure; considerations of how the 

outcome of this defense wrapper will be incorporated into the larger agent model, i.e: 

the dialogue game, logic, etc., must be left for future research into this topic. 

5.2 Detecting Patterns of Malicious Arguments 

The malicious argumentation strategies described in Section 4.3 are based on the princi

ple of expanding the syntactic form of an argument while retaining the semantic content, 

such that the resources allocated to the deduction system used in an agent’s decision pro
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cedures will be exhausted before a particular result can be derived. This is accomplished 

by modifying the argument using relatively simple syntactic patterns, such as long chains 

of simple implications (Section 4.3.2) or conjuctions of simple tautologies to construct 

large, scalable tautologies (Section 4.3.3). These strategies are designed to target the at

tack relation decision procedure used by the argument evaluation decision procedure, in 

order to “hide” particular attack relations by exhausting the resources of the deduction 

system before a conflict between arguments can be decided. A defense strategy could then 

be implemented by constructing a wrapper around the attack relation decision procedure 

designed to detect these patterned syntactic constructions. 

5.2.1 Pattern Matching Implication Chains 

The implication chaining malicious argumentation strategy described in Section 4.3.2 

makes use of a simple, scalable syntactic modification of an argument’s contents to ex

haust the resource bounds of an opponent’s attack relation decision procedure. As the 

modification is constructed in a purely mechanical manner, it creates an easily identifi

able pattern in the syntactic form of the argument, which can be detected through the 

use of a fairly simple pattern matching algorithm. The attack relation decision procedure 

can then be modified by implementing a defense wrapper around the procedure in or

der to identify instances of implication chain patterns before the attack relation decision 

procedure is executed. 

There is a danger, however, in simply matching chains of implications and identify

ing them as instances of a malicious argumentation strategy. For instance, a “chain” 

consisting of a single implication will likely occur often in entirely legitimate arguments; 

even larger chains of implications can be used in arguments that are constructed with no 

malicious intent. The pattern matching must therefore be performed in such a way as to 

minimize the possibility of such false-positive identifications of malicious argumentation 
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strategies. For implication chains then, there is a particular type that can be identified as 

an instance of malicious argumentation with a high degree of certainty: those implication 

chains of such a length that the resources allocated to the deduction system would be 

exhausted before their final consequent can be derived. While it may be possible that 

such implication chains occur “naturally” within the system, it is far more likely that 

they are instances of a malicious argumentation strategy. 

A pattern to detect implication chains of a particular length can then be constructed 

as follows: 

λ1, λ1 → λ2, ..., λn−1 → λn 

To match this pattern against a given argument (Φ, α), each λi (1 ≤ i ≤ n) needs 

to be substituted with an appropriate formula from the support set Φ ⊆ L. The chain 

length n for the pattern can then be set to a minimal value such that the resources 

allocated to the prover will be exhausted before the final consequent matched by λn can 

be derived. While it may be that implication chains employed by a malicious resource 

exhaustion strategy are much longer than what is matched by this pattern, nonetheless 

the initial segment of the chain will be matched by this pattern, regardless of how much 

longer the actual chain is. 

Example 27. Let (Φ, α) = ( {P1, P1 → P2 , ..., Pm−1 → Pm, Pm → Q}, Q ) 

Assume a resource bound of k inference steps, and that m = 2k. 

Let n = k be the length of the implication chain pattern to be matched. 

The following substitutions can then be identified: 

λ1 ≈ P1, λ2 ≈ P2, ..., λn ≈ Pm/2 

Even though the implication chain in (Φ, α) continues from P(m/2)+1 to Pm, an im

plication chain pattern of length n has been found in the argument that will at the very 

least exhaust the resources available, regardless of how much longer it is. 
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5.2.2 Counter-Measure Against this Defense Strategy
 

As shown above, the simple implication chaining malicious argumentation strategy de

scribed in Section 4.3.2 can be detected through the use of a fairly simple pattern match

ing defense strategy. However, using the concept of implication chains as the basic scaling 

pattern, more complex malicious argumentation strategies can be developed for which 

the defense strategy will be inadequate. The pattern matching technique described above 

is based on the idea that the consequent of one link in the chain will be the antecedent 

of the next link. Knowing this, a malicious strategy based on implication chaining could 

be developed that will retain the basic principle of constructing arbitrarily long chains 

of implications, yet does not follow this consequent/antecedent matching pattern. 

Example 28. P0, P0 → P1, (P0 ∧ P1) → P2 , ..., (Pn−2 ∧ Pn−1) → Pn 

This example of an implication chaining strategy achieves the same effect as the basic 

implication chaining strategy from Section 4.3.2, yet will not be detected by the pattern 

matching defense strategy described above in Section 5.2.1, as the consequent of each 

implication is not syntactically equivalent to the antecedent of the next implication in 

the chain. 

As with the basic implication chaining strategy, this new strategy constructs implica

tion chains through a highly patterned, mechanical construction. It would therefore be a 

simple matter to construct a pattern matching defense strategy to detect this malicious 

argumentation strategy as well. However, it would also be a simple matter to construct 

another variant of the basic implication chaining strategy for which a pattern matching 

defense strategy has not been constructed yet. For every patterned malicious argumen

tation strategy, a pattern matching defense strategy can be constructed, and conversely, 

for every defense based on pattern matching, new malicious patterns can be constructed 

that are not detected by the defense strategy. 
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5.2.3 General Limitations of Pattern Matching 

The basic idea behind the type of malicious argumentation strategies discussed in this 

thesis is to construct a syntactic modification that both preserves the original semantic 

content of an argument, and can be arbitrarily scaled to exhaust any resource bound 

imposed on the underlying deduction system. This scaling is accomplished by repeating 

a particular syntactic pattern, connected either through implication as seen in the impli

cation chaining strategy (Section 4.3.2), a conjuction as used in the tautology injection 

strategy (Section 4.3.3), or other means not yet explored. Defense strategies can then be 

implemented to detect these patterns, and identify when the occurance of such a pattern 

is likely being used to exhaust the deduction system’s resource bounds. However, as 

shown in Section 5.2.2 above, it can often be a relatively simple task to construct new 

variants of the basic scaling pattern that are not detected by the defense strategies. A 

defense strategy can implement pattern matching techniques to address all instances of 

known malicious argumentation patterns, and even anticipate new patterns that have 

not yet been encountered, but it cannot address every possible syntactic manipulation 

that could be used to exhaust the deduction system’s resource bounds. 

Consider the tautology injection strategy from Section 4.3.3; using a repeated con

junction of a single simple tautology, a large syntactic construct can be built to exhaust 

a particular resource bound. While a pattern matching defense could be developed to 

identify the particular tautology used in the example, it is well known that there are an 

infinite number of possible tautologies, of greater and more elaborate complexity than 

the one used herein. It would be impossible to account for every single tautology in the 

pattern matching algorithm. Further, a simple modification to the malicious strategy 

would be to use different tautologies in conjunction with one another, rather than simply 

repeating the same tautology. This would further increase the difficulty in detecting this 

type of malicious argumentation strategy. Regardless of the number of patterns a defense 
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strategy accounts for, there will always be an infinite number of patterns it cannot detect. 

Further, pattern matching itself is not a trivial operation. While the algorithms are, 

in general, less expensive than those used by the deduction system, they nonetheless re

quire resources to execute. The more patterns that a particular defense strategy accounts 

for, the greater the resources required to complete its analysis of a given argument. It 

will likely be necessary to impose resource bounds on any defense strategy implemented 

in an argumentation system, and as such, it may be that malicious argumentation strate

gies are developed specifically to exhaust the resources allocated to an agent’s defense 

mechanisms. Furthermore, it may be that, through happenstance, legitimate arguments 

are identified as containing malicious argumentation patterns by the defense mechanisms. 

As the number of patterns tested by a defense strategy grows, so too does the chance of 

false-positive identifications of malicious argumentation. Therefore, while pattern match

ing can be used as a means of identifying instances of particular malicious argumentation 

strategies, it is by no means a perfect defense strategy against malicious argumentation. 

5.3 Other Potential Defense Strategies 

While the pattern matching defense strategy discussed in Section 5.2 above is an obvious 

means of implementing a defense strategy, it is certainly not the only means of defending 

against malicious argumentation. In this section, other potential defense strategies will 

be addressed, albeit to no great depth. This includes considerations of how the outcome 

of malicious argumentation detection mechanisms (the defense wrappers described in 

Section 5.1) can be incorporated into the larger agent model, as well as how the logic of 

justification and the protocol governing the dialogue game might be modified to integrate 

a defense strategy into the agent model. This discussion of defense strategies should be 

seen as merely illustrative rather than exhaustive; there are myriad means by which an 
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agent may defend against malicious arguments, and a thorough investigation of these 

strategies is well beyond the scope of this thesis. As with the previous section, this 

discussion should be understood as a motivation for future research into this expansive 

topic, rather than good and proper research in and of itself. 

5.3.1 Mapping the Outcome of Defense Wrappers 

As discussed in Section 5.1, decision procedures susceptible to malicious argumentation 

can be modified to incorporate a defense wrapper designed to detect instances of mali

cious argumentation. This may be implemented as a pre-processing pattern matching 

algorithm as described in Section 5.2, or as a post-processing algorithm making use of 

information resulting from the execution of the decision procedure. Regardless of the 

specific implementation, however, the outcome of the defense wrapper needs to be incor

porated into the larger agent model. 

Rather than considering every decision procedure in the argumentative agent model, 

we shall focus this discussion on the attack relation decision procedure in the argument 

evaluation process, as has been done numerous times throughout this thesis. Consider 

then an implementation of the pattern matching defense wrapper; in the case that the 

defense wrapper does not identify a potential malicious argumentation pattern in the 

input to the attack relation decision procedure, the decision procedure itself can execute 

normally. However, when the pattern matching wrapper identifies an instance of a mali

cious argumentation pattern, the correct outcome of the procedure is not entirely clear. 

As mentioned above, even a positive identification of a malicious pattern does not imply 

that the malicious pattern was designed to hide the specific attack relation being cur

rently tested. The decision procedure cannot then return a positive result that an attack 

relation does in fact exist between the input arguments being tested. To do so would 

possibly violate the felicity conditions of the counter-attack performative; that is, the 
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agent might respond with a counter-attack argument that is not in fact a counter-attack. 

However, given that the defense wrapper identified the input as containing a malicious 

pattern, it would be remiss for the system to simply ignore this result. Rather than 

strictly modifying the boolean output of the wrapped decision procedure (in this case, 

positive / negative identification of an attack relation), a more complex response can be 

considered. The first we shall consider would be to simply reject the argument. That is 

not to say that the argument is rejected because it can be attacked; when an attack is 

found, the agent responds with a counter-attack, as is the way of the dialectic process of 

justification. Rather, a rejection would likely constitute the removal of that particular 

argument from the dialectic process entirely, or in the most extreme case, a termination 

of the dialogue itself. The specific nature of such a rejection would have to be decided at 

the level of the dialectic protocol, but regardless of the implementation, this is a fairly 

extreme response to the detection of a pattern that only holds the possibility of being 

employed in a malicious resource exhaustion strategy. 

Rejection of an argument is not the only means of incorporating the results of a de

fense wrapper. Another strategy might be to “flatten” the results of the pattern matching 

algorithm. That is to say, similar to the way that inference rules in the deductive sys

tem match patterns of logical formulae to manipulate the syntactic representation of 

the semantic content in a logic, the pattern matching defense wrapper can be seen as 

a pre-processing syntactic manipulation designed to identify and reduce very specific 

syntactic patterns. If the pattern matching defense wrapper described in Section 5.2.1 

above were to identify a long chain of inferences eventually ending in the consequent 

Q, the argument fed as input to the attack relation decision procedure can be syntac

tically modified by simply replacing the chain with the consequent Q. As the pattern 

matching defense wrapper is designed to identify specific implication chain patterns of a 

particular minimum length, this pseudo inference rule is nowhere near complete (albeit, 
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hopefully, sound). Nonetheless, implementation of very specific “inference rules” in the 

defense wrapper designed to detect known patterns of malicious argumentation may be 

a significant reduction in computational resources required, in comparrison to only using 

the general inference rules of the deduction system itself, therefore allowing the system 

to efficiently detect counter-attacks for particular arguments. 

5.3.2 Modifying the Logic of Justification 

As described in Section 2.2.1, the logic of justification is based on the notion of an 

extension; a particular subset of the arguments presented in the dialogue game (or, 

more abstractly, in the argumentation framework) that satisfies a particular criteria. 

Those arguments belonging to an extension defined by the acceptability semantics used 

by the system are justified, whereas those that do not belong to the extension are not 

justified. However, the notions of justification and acceptability can be modified to 

incorporate the computational resource bounds imposed on a practical implementation 

of an argumentation system. For instance, an extension can be segregated into two classes 

of arguments: those for which the process of justification could be completed within the 

given computational resource bounds, and those for which the resources allocated to 

the process were exhausted before completion. These could be identified as the classes 

complete acceptance and resource exhausted acceptance, respectively. 

The segregation of these two classes follows quite simply from the outcome of the 

decision procedures. It is only necessary for the decision procedure to report whether 

it was able to complete its decision within the imposed resource bounds. For instance, 

when performing argument evaluation, if any of the attack relation decisions cannot be 

completed within resource bounds, the outcome of evaluation is placed into the resource 

exhausted class. The outcome may still be acceptable or unacceptable, but nonethe

less the result is “weakened” due to being a member of the resource exhausted class. 
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Conversely, if the entire process was able to complete within the given resource bounds, 

this can be seen as a “stronger” result of the argument evaluation procedure, with the 

arguments then being members of the complete acceptance class. 

At this point, the terms “stronger” and “weaker” have been used to relate to the 

difference between membership in these classes. However, these are intuitive notions; to 

properly implement such a defense strategy, it would be necessary to formally define the 

notions of “stronger” and “weaker” with respect to the argumentation model as a whole. 

This could entail a modification of the attack relation conditions, in that weaker accept

able arguments may not attack stronger ones. Further, this may require modifications 

at the level of the dialectic protocol; weak-accept, strong-accept, weak-counter-attack, 

strong-counter-attack, etc.. Given that agents engage in an argumentative dialogue for 

some higher purpose, such as deliberation, negotiation or pursuasion, it must then be 

considered how weak and strong notions of justification affect this higher level decision 

procedure. This modification which, at face value, seems relatively simple, would in fact 

require heavy modifications to the argumentation model as a whole. Nonetheless, it may 

prove to be a valuable defense strategy against malicious resource exhaustion strategies. 

5.3.3 Modifying the Dialectic Protocol 

As already mentioned in the preceding sections, the incorporation of a defense strategy 

into the larger argumentation model may require modifications to dialectic protocol. New 

performatives may be introduced to the protocol, such as the argument rejection per-

formative discussed in Section 5.3.1, or the weak/strong acceptance and counter-attack 

performatives discussed in Section 5.3.2 above. Implementing such new performatives is 

not as simple as introducing them at the level of the dialectic protocol; it must also be 

considered how their condition’s are satisfied by the lower levels of the argumentation 

model, and what effects their introduction will have on the larger decision procedure for 
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which the dialectic procedure is employed, such as deliberation, negotiation, persuasion 

or otherwise. 

In addition to the various performatives already briefly discussed, there are others 

that warrant consideration. For instance, in the case that resources are exhausted while 

computing a particular decision procedure, instead of rejecting an argument or demoting 

its status as described above, an agent may request a simplified version of the argument. 

This request could be formalized as an additional performative in the dialectic protocol. 

However, the addition of a new performative into the dialectic protocol may introduce 

new complications which require deeper consideration. For instance, it is necessary to 

consider how an agent may determine whether the new “simplified” argument it recieves 

in response to this request is actually semantically similar to the original argument for 

which resources were exhausted. Given that the agent did not have sufficient resources 

to complete its analysis of the original argument, it has no real basis for comparison with 

the new argument. Further, it must be considered how such a performative opens up the 

potential for abuse by malicious agents; an agent may repeatedly request simplifications 

on arguments for which it has sufficient resources to perform decisions on, with the aim 

of strategically consuming the resources allocated to the dialogue as a whole. 

Given that the rules of the dialogue game govern the interactions between agents, any 

additions to these rules will invariably introduce new complexities into the agent interac

tions. While these complexities may allow for certain desirable behaviours that would be 

impossible given the constraints of a simpler dialectic protocol, they may also introduce 

undesirable consequences which may not be immediately perceptible. Particularly in 

open multi-agent systems, agents may not “play by the rules”; performatives often have 

conditions dependent on an agent’s internal state, which cannot be externally verified. 

Therefore, while modifications to the dialectic protocol may provide an important tool 

for incorporating defense strategies against malicious argumentation, such modifications 
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may also introduce the possibility of new malicious strategies, and so must be performed 

conservatively and with attention paid to the potential for abuse. 

5.4 General Principles of Defense 

As seen in the discussion of a mechanism for detecting instances of malicious argumenta

tion by pattern matching in Section 5.2, as well as the general strategies for incorporating 

defense mechanisms into the larger argumentative agent model discussed in Section 5.3, 

none of these methods provides a perfect means to defend against malicious argumenta

tion strategies. Whether there are too many different malicious argumentation strategies 

to account for, that the defense mechanisms themselves must be resource bounded, or that 

the implementation of the defense strategy would open the possibility of new malicious 

argumentation strategies, all defenses against malicious argumentation are necessarily 

imperfect. All defense strategies require a trade-off; rejecting arguments for which argu

ment evaluation can’t complete within the given resource bounds provides a higher degree 

of security, yet restricts the scope of legitimate arguments that can be employed within 

the system; matching a greater number of malicious argumentation patterns in turn re

quires a greater amount of resources to be allocated to pattern matching, restricting the 

resources available to other decision procedures involved in argumentation. Any defense 

strategy devoloped to counteract malicious argumentation may in turn be undermined 

by further developments in malicious argumentation strategies. 

Nonetheless, it is important for defense strategies against malicious argumentation 

to be investigated and developed. If no defenses against malicious argumentation are 

considered, then even the simplest resource exhaustion strategy can be employed to 

great effect. The situation of defending against malicious argumentation can be seen as 

analogous to that of detecting and defending against virii and malware [Ayc08]; it would 
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be impossible to construct a “perfect” defense that could detect any virus or piece of 

malicious software. However, it is still necessary to detect virii and malware that are 

well known, so that the simplest virus can’t wreak havok on our computing equipment. 

Further, virus and malware defense strategies are subject to the same practical resource 

bounds as defenses against malicious argumentation; a computer can’t spend all of its 

resources examining software for malicious code, as the computing resources need to also 

be used by the actual software a user wishes to run. Therefore, both in argumentation 

defense strategies and virus and malware detection, a balance must be struck between 

the robustness of the defense strategy and the resources allocated to the actual tasks the 

system is designed to accomplish. 

The general principles of defense against malicious argumentation can then be sum

marized as follows: 

1.	 No Perfect Defense - all defenses against malicious argumentation are necessarily 

imperfect, in that they cannot account for every possible malicious argumentation 

strategy 

2.	 Balanced Defense - all defense strategies must make trade-offs, either between ro

bustness and security, between coverage of attacks and resource consumption, or 

otherwise 

3.	 Raise the Bar - at the very least, a defense strategy should prevent the simplest 

malicious argumentation strategies from being effective, so that a malicious agent 

requires a certain degree of expertise to surpass the defenses 

By recognizing the essential inadequacies of defense strategies, the developer of an 

argumentation system will never be under the illusion that their system is impenetrable. 

Understanding the balance that needs to be struck, and the dimensions upon which a 
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defense strategy needs to be balanced, is crucial for implementing an effective defense 

strategy that does not undermine the purpose of the system being developed. And finally, 

it is imperative that a defense strategy be implemented in such a way as to at least make 

it difficult for an agent to successfully employ a malicious argumentation strategy. By 

addressing the simple malicious argumentation strategies, such as those described in this 

thesis, greater expert knowledge is required by a malicious agent, therefore reducing the 

number of agents able to successfully employ a malicious argumentation strategy. In 

this way, the risk of using argumentation in open-multi agent systems can be reduced; it 

cannot be eliminated entirely, but it must be reduced to an acceptable level before such 

systems can be considered for popular use in commercial applications or otherwise. 
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Chapter 6 

Conclusion 

The goal of this thesis was to introduce the potential for malicious actions performed by 

agents involved in argumentation in an open multi-agent system, as well as to provide an 

outline of the difficulties inherit in defending against such malicious argumentation. To 

accomplish this, a general account of malicious resource exhaustion strategies targeting 

the intractability of decisions in the underlying formal logical language was given, as well 

as a practical example of how such a resource exhaustion strategy could be instantiated 

to manipulate the outcome of the argument evaluation procedure. Further, the topic of 

defense was addressed from a high-level perspective, analyzing a few strategies that could 

be used to counter-act certain malicious argumentation strategies, and concluding with 

a general analysis of defense and the necessary insufficiency of any particular defense 

strategy. 

In summary, although argumentation is a powerful means of communicative interac

tion in open multi-agent systems, the advantages gained through the use of argumentation 

are not without consequence. By employing an underlying formal logical language to con

vey the content of arguments, agents gain an expressive power that cannot be attained 

through simple symbolic methods of communication. However, the advantages gained 

through the expressive power of a logical language are balanced against the intractability 

of certain procedures on this language, such as deciding consistency and logical entail

ment. Due to the necessity of limiting the resources available to agents during their 

respective turns in a dialectic interaction, resource exhaustion is an unavoidable possibil

ity. In a closed argumentation system, the effects of resource exhaustion can be minimized 

through the use of fairness criteria and a greater control over the actions of agents in the 
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system. However, in open multi-agent argumentation systems, fairness of resource con

sumption cannot be guaranteed by protocol, and the system as a whole has little control 

over the actions of individual agents. As agents in an open-multi agent system generally 

execute on uncontrolled client software, not only may agents be self-interested, but they 

may attempt to perform malicious actions to gain an advantage over other agents in 

the system. Defense strategies may be implemented to counter-act malicious resource 

exhaustion strategies, such as matching syntactic patterns or altering the rules of the 

dialogue game controlling the agents’ interactions. However, such defense strategies are 

necessarily imperfect; while certain patterns may be detected, it would be impossible to 

exhaustively detect every pattern that could be used by a malicious agent; while the rules 

of the dialogue game may be modified to facilitate defense strategies, these modifications 

may also open up new potential malicious exploitations of the system. Nonetheless, it 

is necessary to implement some means of defense against malicious argumentation, or 

these systems will be susceptible to the simplest exploits. The goal of defense is therefore 

to increase the effort required of a malicious agent, so as to minimize the potential for 

exploitation while still retaining the core functionality of the argumentation system. 

6.1 Future Work 

There are myriad directions in which the concepts presented in this thesis could be 

explored. While a preliminary examination of malicious agent strategies in open multi-

agent argumentation systems has been given, it is by no means an exhaustive investigation 

of this topic. The discussion of malicious strategies presented in this thesis has primarily 

been focused on the argument evaluation procedure, yet even for this decision procedure, 

only two methods of implementing a malicious strategy were given; an investigation 

into further implementations of resource exhaustion strategies targeting the argument 
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evaluation procedure would likely yield many new techniques. Apart from argument 

evaluation, the argument validity and dialogue game decision procedures were also briefly 

evaluated for their susceptibility to malicious argumentation; a deeper investigation into 

particular malicious argumentation techniques targeting these decision procedures would 

also be warranted. 

The discussion of strategies to defend against malicious argumentation presented in 

this thesis is both preliminary and high-level; the primary goal of this thesis was to 

establish the potential for malicious activity in open multi-agent argumentation systems. 

A deeper investigation into defense strategies is certainly an important direction for 

future research into this broad topic. Both in the development of techniques to counter

act particular forms of malicious argumentation, as well as research into general strategic 

considerations of defense against malicious argumentation, there is a vast potential for 

investigation into this aspect of practical argumentation. 

For both the development of new malicious argumentation strategies and investiga

tion into defense techniques to counter-act malicious argumentation, the development of 

proper implementations would be invaluable. Currently, the field of argumentation has 

little in the way of implemented systems, however this is quickly changing. The current 

state of theoretical research into automated argumentation has reached a point where 

the development of applications is warranted, and the community is certainly increasing 

its focus on this direction of research. By working in conjunction with existing projects 

in development, or even developing separate software in order to perform experiments on 

malicious argumentation and defense strategies, new insights into the strategic consider

ations of practical argumentation systems will likely arise that would not otherwise. 

Conversely, there are also theoretical aspects of malicious argumentation that would 

be valuable to investigate. While this topic is primarily concerned with a practical 

aspect of implemented argumentation systems, it would nonetheless be useful to introduce 
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a higher degree of formalism to the concepts discussed within this thesis. This may 

include a formal characterization of vulnerability due to the particular features of an 

argumentation system, or a more precise definition of a malicious resource exhaustion 

strategy by introducing concepts from formal proof theories. Further, it may be valuable 

to construct proofs of some of the central topics of this thesis, such as the necessary 

inadequacy of defense strategies, that are now only dealt with through natural language 

arguments. 

It should therefore be apparent that the topic of malicious argumentation strategies 

in open multi-agent systems holds great potential for future research projects. Investiga

tion into either the development and understanding of malicious strategies and defense 

strategies, both from a practical and a theoretical perspective, would likely produce some 

interesting and valuable results. Given that the argumentation community is just now 

emerging from its theoretical infancy into a mature field warranting the development 

of practical applications, continued research into these strategic manipulations and the 

possibility of malicious exploitation is not only justified, but necessary. 
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Appendix A 

Prover9 Example Code 

A.1 Unmodified Example Code 

set(raw). 

set(binary_resolution). 

set(print_gen). 

set(prolog_style_variables). 

formulas(sos). 

%%% Support {C2,...,C5} from argument <{C2, ..., C5}, C1> %%% 

% Clause C2 %
 

HasP(wg3000, amp20mA).
 

% Clause C3 % 

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA)) 

-> ProvF(wg3000, genFreq30Hz). 

% Clause C4 %
 

UseC(psu423) -> ProvF(psu423, power20mA).
 

% Clause C5 %
 

UseC(wg3000).
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UseC(psu423).
 

Conn(psu423, wg3000).
 

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%% 

-UseC(psu423). 

end_of_list. 

A.1.1 Statistics 

Given=0. Generated=7. Kept=7. proofs=1.
 

Usable=0. Sos=0. Demods=0. Limbo=6, Disabled=7. Hints=0.
 

Kept_by_rule=0, Deleted_by_rule=0.
 

Forward_subsumed=0. Back_subsumed=0.
 

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
 

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.
 

Demod_attempts=0. Demod_rewrites=0.
 

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
 

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.
 

Megabytes=0.02.
 

User_CPU=0.01, System_CPU=0.03, Wall_clock=0.
 

http:System_CPU=0.03
http:User_CPU=0.01
http:Megabytes=0.02
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A.2 Implication Chaining Example Code 

set(raw). 

set(binary_resolution). 

set(print_gen). 

set(prolog_style_variables). 

formulas(sos). 

%%% Support {C2,...,C5’n} from argument <{C2, ..., C5’n}, C1> %%% 

% Clause C2 %
 

HasP(wg3000, amp20mA).
 

% Clause C3 % 

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA)) 

-> ProvF(wg3000, genFreq30Hz). 

% Clause C4 %
 

UseC(psu423) -> ProvF(psu423, power20mA).
 

% Clause C5’n (where n = 5) %
 

UseC(wg3000).
 

UseC(fake1).
 

UseC(fake1) -> UseC(fake2).
 

UseC(fake2) -> UseC(fake3).
 

UseC(fake3) -> UseC(fake4).
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UseC(fake4) -> UseC(fake5).
 

UseC(fake5) -> UseC(psu423).
 

Conn(psu423, wg3000).
 

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%%
 

-UseC(psu423).
 

end_of_list. 

A.2.1 Statistics 

Given=14. Generated=21. Kept=21. proofs=1.
 

Usable=9. Sos=4. Demods=0. Limbo=0, Disabled=19. Hints=0.
 

Kept_by_rule=0, Deleted_by_rule=0.
 

Forward_subsumed=0. Back_subsumed=7.
 

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
 

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.
 

Demod_attempts=0. Demod_rewrites=0.
 

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
 

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=18.
 

Megabytes=0.03.
 

User_CPU=0.01, System_CPU=0.03, Wall_clock=0.
 

http:System_CPU=0.03
http:User_CPU=0.01
http:Megabytes=0.03
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A.3 Tautology Injection Example Code 

set(raw). 

set(binary_resolution). 

set(print_gen). 

set(prolog_style_variables). 

formulas(sos). 

%%% Support {C2,...,C5’’n} from argument <{C2, ..., C5’’n}, C1> %%% 

% Clause C2 %
 

HasP(wg3000, amp20mA).
 

% Clause C3 % 

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA)) -> 

ProvF(wg3000, genFreq30Hz). 

% Clause C4 %
 

UseC(psu423) -> ProvF(psu423, power20mA).
 

% Clause C5’’n (where n = 5) %
 

UseC(wg3000).
 

( (((a1 -> b1) & (b1 -> c1)) -> (a1 -> c1)) &
 

(((a2 -> b2) & (b2 -> c2)) -> (a2 -> c2)) &
 

(((a3 -> b3) & (b3 -> c3)) -> (a3 -> c3)) &
 

(((a4 -> b4) & (b4 -> c4)) -> (a4 -> c4)) &
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(((a5 -> b5) & (b5 -> c5)) -> (a5 -> c5))
 

) -> UseC(psu423).
 

Conn(psu423, wg3000).
 

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%%
 

-UseC(psu423).
 

end_of_list. 

A.3.1 Statistics 

Given=5893. Generated=127926. Kept=23554. proofs=1.
 

Usable=22. Sos=2. Demods=0. Limbo=0, Disabled=24559. Hints=0.
 

Kept_by_rule=0, Deleted_by_rule=0.
 

Forward_subsumed=104372. Back_subsumed=23529.
 

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.
 

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.
 

Demod_attempts=0. Demod_rewrites=0.
 

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.
 

Nonunit_fsub_feature_tests=58916. Nonunit_bsub_feature_tests=47063.
 

Megabytes=10.16.
 

User_CPU=8.08, System_CPU=13.62, Wall_clock=108.
 

http:System_CPU=13.62
http:User_CPU=8.08
http:Megabytes=10.16
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