
UNIVERSITY OF CALGARY

Malicious Argumentation

in Open Multi-Agent Systems

by

Andrew Kuipers

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

December, 2010

c 2010
© Andrew Kuipers

The author of this thesis has granted the University of Calgary a non-exclusive
license to reproduce and distribute copies of this thesis to users of the University
of Calgary Archives.

Copyright remains with the author.

Theses and dissertations available in the University of Calgary Institutional
Repository are solely for the purpose of private study and research. They may
not be copied or reproduced, except as permitted by copyright laws, without
written authority of the copyright owner. Any commercial use or re-publication is
strictly prohibited.

The original Partial Copyright License attesting to these terms and signed by the
author of this thesis may be found in the original print version of the thesis, held
by the University of Calgary Archives.

Please contact the University of Calgary Archives for further information:
E-mail: uarc@ucalgary.ca
Telephone: (403) 220-7271
Website: http://archives.ucalgary.ca

http:http://archives.ucalgary.ca
mailto:uarc@ucalgary.ca

Abstract

Argumentation provides a powerful means to achieve complex, non-demonstrative rea

soning within a multi-agent system. However, the advantages gained by this form of

automated reasoning are not without consequence. When arguments are constructed out

of formulae in an underlying formal logical language, decisions such as argument evalu

ation involve deciding the consistency or logical entailment of the component formulae

of arguments. Given that these decisions are generally intractable, and further that an

agent’s decisions need to be resource bounded, malicious exploitation is possible. By

strategically expanding the syntactic content of its arguments, a malicious agent may

exploit the resource bounds of its opponent’s decision procedures, effectively manipulat

ing their outcome towards its own ends. This type of exploitation presents an important

vulnerability in the security of open multi-agent systems employing argumentation as

a means of communicative interaction. It is therefore necessary to investigate and de

velop strategies for detecting and defending against this type of malicious exploitation.

However, such defense strategies will necessarily be insufficient; it would be impossible

to construct a perfect defense against malicious resource exhaustion strategies in open

multi-agent argumentation systems. Nonetheless, research into efficient means of mini

mizing the risk of such exploitation is warranted, as is continued investigation into further

methods of malicious agent strategies in practical argumentation systems.

ii

Acknowledgements

First and foremost, I would like to thank my supervisor, Jörg Denzinger, for the oppor

tunity to work on this project, as well as his continued support and feedback during my

investigation into this rather esoteric topic. I would also be terribly remiss to not thank

my mother, Chyrelanne Kuipers, amidst the top of my acknowledgements; your passion

for education has always been an insipration, and your kind words of encouragement and

wisdom have helped me more than you’ll know. To the other graduate students, both

in my lab and otherwise, I thank you as well for a most pleasurable, and often quite

entertaining, experience; an exhaustive list would simply be too long, but you know who

you are! To both the faculty and staff in the department, through the classes I’ve taken

and the administrative details you’ve taken care of, you’ve helped me immeasurably, and

I thank you for that. Finally, I would like to thank my thesis committee for taking the

time to scrutinize the research I’ve presented herein.

iii

iv

Table of Contents

Abstract . ii

Acknowledgements . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1

2 Argumentation . 6

2.1 Proof and Argument . 7

2.2 Abstract Argumentation . 9

2.2.1 Argumentation Semantics . 10

2.2.2 Preferred, Grounded and Complete Extensions 11

2.3 Structured Arguments . 14

2.3.1 Attack Relation Semantics . 16

2.3.2 Attack Relations, Argument Evaluation and Deduction 19

2.4 Argumentation in Multi-Agent Systems 20

2.4.1 Dialogue Games . 21

2.4.2 Semantics of Assertion and Acceptance 24

2.4.3 Argumentation in Open Multi-Agent Systems 26

2.5 Resource Bounded Argumentation . 28

3 Automated Theorem Proving . 31

3.1 Logics . 31

3.1.1 The Logical Language L . 32

3.1.2 Normal Forms . 37

3.1.3 The Truth Domain W . 37

3.1.4 The Interpretations I . 38

3.1.5 Models and Satisfiability . 40

3.2 Logical Calculus . 41

3.2.1 Inference Rules . 42

3.2.2 Resolution . 44

3.2.3 Unification . 45

3.3 Soundness and Completeness . 46

3.4 Search Control . 47

4 Malicious Argumentation . 52

4.1 Consequences of Resource Bounded Argumentation 52

4.2 Decision Procedures Susceptible to Malicious Argumentation 56

4.2.1 Argument Validity . 57

4.2.2 Argument Evaluation . 61

4.2.3 The Dialogue Game . 64

4.3 Strategically Manipulating Arguments 68

4.3.1 A Resource Bounded Undercut Relation 69

4.3.2 Implication Chaining . 70

4.3.3 Tautology Injection . 73

4.4 Example of Malicious Argumentation . 76

4.4.1 Example System . 77

4.4.2 “Normal” Interaction Scenario . 79

4.4.3 Malicious Argumentation Scenario 81

5 Defense Strategies . 85

5.1 Modifying the Agent Model . 85

5.2 Detecting Patterns of Malicious Arguments 87

5.2.1 Pattern Matching Implication Chains 88

5.2.2 Counter-Measure Against this Defense Strategy 90

5.2.3 General Limitations of Pattern Matching 91

5.3 Other Potential Defense Strategies . 92

5.3.1 Mapping the Outcome of Defense Wrappers 93

5.3.2 Modifying the Logic of Justification 95

5.3.3 Modifying the Dialectic Protocol 96

5.4 General Principles of Defense . 98

6 Conclusion . 101

6.1 Future Work . 102

A Prover9 Example Code . 105

A.1 Unmodified Example Code . 105

A.1.1 Statistics . 106

A.2 Implication Chaining Example Code . 107

A.2.1 Statistics . 108

A.3 Tautology Injection Example Code . 109

A.3.1 Statistics . 110

Bibliography . 111

v

List of Tables

2.1 Walton and Krabbe’s Dialogue Type Classification 23

4.1 Results for Implication Chains . 83

4.2 Results for Tautology Injection . 84

vi

List of Figures

2.1 Argumentation Framework Example . 10

vii

1

Chapter 1

Introduction

Reasoning is a broad and pervasive topic throughout academia. In the sciences, both

evidence-based reasoning and theoretical methods of reasoning form the cornerstone of

scientific progress; in economics, statistical reasoning and game theoretic reasoning allow

these complex systems to be understood and manipulated; in law, the judicial process is

understood and applied through a process of reasoning. These are but a few examples,

yet it should take no more than a moment’s reflection to recognize myriad others, not

only in academia but in business, politics, religion and the activities of our everyday lives.

Reasoning is among the most powerful and essential cognitive instruments available to us;

through it, understanding, explanation, investigation and interaction may be achieved,

both formally and informally.

Formal applications of reasoning have traditionally focused heavily on demonstrative

methods; that is to say, proof. Absolute and irrefutable truth is the consequence of proof,

and as such, proof is highly desirable. In the metaphysical constructs of mathematics

and formal logics, proof is both available and necessary, as these systems are rooted

in absolutes. Those systems residing outside metaphysics, the informal and natural

systems, do not so readily admit such absolutism. Our interpretation of these systems,

and the formalisms we construct to reason over and understand these systems, must

therefore respect this lack of absolutism. The phenomenal necessitates an insufficiency

of interpretation.

Despite our inability to employ demonstrative proof within this context, reasoning

is nonetheless possible, as evidenced by a vast history of non-demonstrative reasoning

encompassing millennia of scientific inquiry and achievement. In the absence of proof

2

and the absolutism of truth, scientific progress has relied on a method of reasoning

commonly held to be in the realm of disputes that are decidedly non-scientific: argumen

tation. The study of argumentation has a rich and expansive history in the philosophical

traditions, although it has often been viewed narrowly as the application of mere rhetoric

and sophistry. However, argumentation forms the cornerstone of non-demonstrative rea

soning; at its core, the study of argumentation is the investigation into the interaction

between unprovables and the nature of justification.

As with argumentation, the study of artificial intelligence has been rife with mis

understanding, both in its popularization and occasionally even by its practitioners. In

essence, artificial intelligence is concerned with applying computational resources towards

exceedingly difficult problems in order to produce reasonable solutions within a reason

able amount of time. As such, the field is more than familiar with insufficiency and the

lack of absolutes; achieving a “perfect” solution is generally infeasible for these problems,

and often impossible. Whether the task is to dynamically route international air traffic,

automatically test a complex software suite or convincingly interact with human beings,

the information upon which the system must make its decisions is generally imperfect,

incomplete or inconsistent. With the addition of realistic time constraints, perfection is

simply unreasonable, regardless of the computing power employed.

Formal methods of reasoning have therefore naturally found application in the field

of artificial intelligence. Traditionally, the focus has been on demonstrative forms of

reasoning; constructing a proof of a particular logical or mathematical theorem is no

trivial matter, and the automation of this task is of immense value to anyone requiring

such a proof. Given this capacity for reasoning over a knowledge base, automated theorem

provers have since been adapted as a means of manipulating knowledge in agent based

systems. In such systems, agents often gather knowledge from their environment with the

aim of using this knowledge to support decision making procedures. However, the strict

3

demonstrative nature of these proof-based reasoning mechanisms is often insufficient

given the incomplete, imperfect and often inconsistent knowledge an agent gathers from

its environment.

To handle this insufficiency, attention has now been turned to automating non-

demonstrative forms of reasoning. Defeasible and non-monotonic logics were developed to

formalize exception-based reasoning, yet the most fruitful of these investigations into au

tomating non-demonstrative reasoning is based on the most pervasive of its natural forms:

argumentation. By drawing inspiration from how humans deal with incomplete, imper

fect and inconsistent knowledge, a powerful means of automating non-demonstrative

reasoning was born. The core of argumentation is also the principle distinction between

it and other forms of automated reasoning, non-demonstrative or otherwise; rather than

constructing a straight line of proof from evidence (or premises) to conclusions, argu

mentation focuses on the dialectic interaction between reasons for and against particular

conclusions. By modeling the process of justification as a dialogue between one side for

and another against a particular claim, automated argumentation provides not only a

powerful means of automating non-demonstrative reasoning, but also one which can be

understood naturally and efficiently by humans interacting with these systems.

With the rapid expansion and adoption of the Internet in the past few decades, the

field of agent-based artificial intelligence has become increasingly interested in employ

ing agents as a means of automating interactions between systems in this vast network.

Rather than being simple pieces of software executing mundane tasks according to rigid

protocols, such as e-mail or web browsers, the goal is to have these agents performing

complex tasks based on sophisticated reasoning mechanisms, such as automated commer

cial negotiations or information search and retrieval. Given the nature of the information

dealt with by agents in this on-line environment, automated argumentation is being in

vestigated as a means of communicative interactions between agents engaged in activities

4

both across the Internet and in other “open” multi-agent systems.

However, the additional value gained by agents employing automated argumentation

in open multi-agent systems is not without consequences. While the Internet brought

with it the value of a rich means of high-speed, long-distance communication, so too

did it bring the potential for malicious abuse of this communication medium. Digital

virii and other forms of malicious software are now able to propagate with increasing

efficiency, and attempts to protect against these threats has resulted in a protracted

conflict between the two sides. For each new defense against virii and malware, new

attacks are developed for which this defense is inadequate. As automated argumentation

is adopted as a means of interaction in open multi-agent systems such as the Internet, a

similar situation will arise between agents employing forms of malicious argumentation

and the defenses developed to counteract them.

The purpose of this thesis is to introduce the concept of malicious argumentation

in the context of open multi-agent argumentation systems. When arguments are con

structed out of formulae in an underlying formal logical language, many decisions in the

argumentation system are based on deciding deduction or consistency in this logical lan

guage. For interesting logics, these decisions are generally intractable; often they cannot

be decided within a reasonable time limit. Given that actions in multi-agent systems need

to be resource bounded, the decisions of the argumentation system are also restricted by

resource limitations. However, many of the decisions performed in an argumentation

system are based on external data: the arguments presented by an agent’s opponent.

Therefore, a malicious agent may construct its arguments in such a way as to exhaust

the resource bounds of its opponent’s decision procedures, thereby altering the outcome

of these decisions. This may allow a malicious agent to manipulate the outcome of the

process of justification towards its own ends, which presents an important vulnerability

in the security of open multi-agent argumentation systems.

5

The goal of this thesis is to provide an overview of the problem presented by malicious

argumentation in open multi-agent systems, both by describing the concept from a high-

level perspective as well as providing a practical demonstration of a malicious resource

exhaustion strategy. Further, it is to provide a convincing account of the necessity of

implementing a defense strategy to counter-act malicious argumentation, and conversely

the necessary inadequacy of any such defense strategy. This thesis is organized into four

primary chapters: Chapter 2 provides an introduction to the field of automated argu

mentation, Chapter 3 provides background information on automated theorem proving,

Chapter 4 investigates the concept of malicious argumentation and provides a concrete

example of a resource exhaustion strategy, and finally Chapter 5 provides a high-level

discussion of defense strategies against malicious argumentation.

6

Chapter 2

Argumentation

This chapter is intended to provide the reader with some background knowledge in the

field of automated argumentation. While not an exhaustive examination of the subject,

this should provide sufficient knowledge for understanding the topic of this thesis. The

chapter is organized as follows: in Section 2.1, the classifications of demonstrative and

non-demonstrative reasoning are described, providing motivation for the basic goals and

mechanisms of argumentation. In Section 2.2, abstract argumentation is introduced,

which provides the general model for a system of arguments and relations between them.

Further, this section examines the principles of argument evaluation, whereby the jus

tification status of an argument is determined in relation to the other arguments in

the abstract argumentation framework. Section 2.3 then looks at arguments as struc

tures built out of formulae in an underlying formal logical language, rather than simple

abstract entities. Included in this section is a definition of attack relation semantics,

which provides a mechanism by which attack relations between structured arguments

may be decided. Section 2.4 then examines argumentation as a means of interaction

between agents in a multi-agent system, including the use of dialogue games to control

the interaction, the relation between dialogue game rules and the semantics of argument

evaluation described earlier, and the particular challenges presented by argumentation

in open multi-agent systems. Finally, Section 2.5 describes the necessity of resource lim

itations in practical implementations of argumentation systems, which will form a focal

point central to the research into malicious argumentation presented in this thesis.

7

2.1 Proof and Argument

Argumentation is a method of reasoning. Similar to proof, arguments are a way of con

necting evidence to conclusions through the use of specific rules. However, an argument

for a particular conclusion does not constitute a proof of that conclusion. A proof is

formed through the valid application of inference rules upon true premises (axioms) in

order to demonstrate the truth of a conclusion. If the proof is both valid and sound in

this way, then the truth of the conclusion cannot be disputed. Proof is therefore clas

sified as a demonstrative method of reasoning, as a sound and valid proof indisputably

demonstrates the truth of its conclusion. Furthermore, proof is classified as monotonic

with respect to set inclusion on the knowledge base, as the addition of new knowledge

cannot retract previous conclusions that have been successfully proven.

In contrast, argumentation is a non-demonstrative method of reasoning. While argu

ments connect evidence to conclusions through the application of valid inference rules,

neither the conclusions nor the evidence used are indisputable. Rather, the evidence is

considered to be assumptions, not axioms, used to support the conclusion. In this way,

a conclusion is warranted rather than proven through a process of argumentation. Given

the possibility of disputation over the conclusion of a given argument, argumentation is

itself classified as non-monotonic with respect to set inclusion on the knowledge base, as

the addition of new knowledge may retract conclusions which were previously warranted.

Given this classification, it may seem that proof is a superior form of reasoning to

argumentation, as it may draw indisputable conclusions from evidence. The conditions

under which proof may operate, however, are far more restrictive than those under which

argumentation is possible. When knowledge is incomplete, imperfect or inconsistent, an

indisputable proof of a conclusion is impossible, yet arguments for the conclusion may

nonetheless be constructed. Under such conditions, it may be that arguments can be

8

constructed both for and against a particular conclusion; in this way, the conclusion may

be disputed. Rather than being an undesirable side-effect, however, dispute is central to

argumentation.

While proof is able to indisputably determine the truth of a conclusion, argumentation

cannot, as the conclusion of arguments may always be disputed by subsequent arguments.

Instead, the goal of argumentation is to determine the warrant, or justification status, of a

conclusion through a process of disputation [Lou98]. Where a proof of the absolute truth

of a given conclusion with respect to an incomplete, inconsistent or imperfect knowledge

base is impossible, a process of argumentation may determine that a given conclusion

is more justified than its logical complement. As may be evident from the term itself,

then, an argument’s justification status is generally not a simple boolean property, but

rather a member of an ordered set describing levels of justification. There are, however,

many different interpretations on how the justification status of a claim is determined,

inasmuch as there are many different systems of argumentation in general.

Regardless of the semantics of justification used by a particular argumentation system,

all argumentation systems employ a common process to determine the justification status

of a claim: the dialectic proof procedure. This procedure is framed as an interaction

between two parties, a proponent and an opponent, wherein the proponent puts forward

arguments in support of the claim, and the opponent in turn puts forward arguments

against the claim. As the interaction proceeds, the proponent’s arguments may be either

in direct support of the claim, or they may be arguments against the arguments put

forward by the opponent, in order to defend the claim. Similarly, the opponent may

either focus its arguments against the claim itself, or against the defense arguments of the

proponent, in order to defend its attack against the claim. The termination conditions of

the interaction, as well as the justification status of the claim computed by the interaction

and the legal moves available to each side during the interaction, are all determined by

9

the particular argumentation system in use.

2.2 Abstract Argumentation

Despite the particular details of an argumentation system, the justification status of a

claim is determined as a property of the relations between arguments put forth by the

proponent and opponent of the claim, rather than as a property of the content of these

arguments. Towards this end, the justification status of a claim is computed in terms of

an argumentation framework, which provides a layer of abstraction between the content of

arguments and the semantics of justification. In an argumentation framework, arguments

are abstract entities whose role is determined by their relation to other arguments. The

seminal argumentation framework proposed by Phan Minh Dung [Dun95] is built around

the irreflexive binary attacks relation between arguments.

Definition. An argumentation framework is a pair AF = (AR, attacks), where:

1. AR is the set of all arguments

2. attacks ⊆ AR×AR is a binary relation between arguments

The argumentation framework then describes a directed attack graph between ab

stract argument entities, where attacks(A, B) is read as “argument A attacks argument

B” (for A, B ∈ AR). Similarly, a set of arguments S ⊆ AR attacks an argument

B ∈ AR if ∃A ∈ S such that attacks(A, B).

Example 1. Let AF ex = (ARex, attacksex) be an argumentation framework, where:

ARex = { a, b, c, d, e }

attacksex = { (c, a), (c, b), (e, a), (e, b), (b, e), (b, c), (d, c) }

A visual representation of the attack relation graph can be seen in Figure 2.1.

10

Figure 2.1: Argumentation Framework Example

2.2.1 Argumentation Semantics

As mentioned in Section 2.1, the goal of argumentation is to determine the justification

status of a claim with respect to a given knowledge base. The justification status of

an argument is determined through a process of argument evaluation, which is based on

a particular argumentation semantics. The argumentation semantics defines a formal

method, either procedurally or declaratively, by which an argument’s justification status

may be evaluated with respect to an abstract argumentation framework. The justification

status of an argument may be a boolean property (justified or not), but is more often

a complex valuation, such as in [PSJ98], to allow for a more fine-grained comparison

between arguments.

There are two principal styles of defining argumentation semantics: either extension-

based semantics, or labelling-based semantics [BG09]. An extension-based semantics for

an argumentation framework (AR, attacks) defines a set of extensions, where each exten

sion defines a particular subset of AR based on the attacks relations between arguments

in AR. Arguments are then tested for membership in these extensions, and a hierarchi

cal organization of a semantics’ extensions may be used to define the complex valuation

11

domain for an argument’s justification status. Conversely, a labelling-based semantics

defines a set of labellings, where each labelling defines a set of labels L and a function

L : AR → L which assigns labels to arguments. The justification status of an argument

is then derived from the labels assigned to the argument by the various labellings of the

semantics. Of the two styles of argumentation semantics, the extension-based method is

by far the predominant one.

2.2.2 Preferred, Grounded and Complete Extensions

In his seminal work on argumentation frameworks [Dun95], Phan Minh Dung defined a

number of concepts which form the basis for many extension based argumentation se

mantics. These concepts are then used to define some of the fundamental extension based

argumentation semantics: the preferred extension, which defines the credulous argumen

tation semantics, and the grounded extension, which defines the skeptical argumentation

semantics. Further, Dung defines the complete extension, which he uses to provide a

“link” between the preferred and grounded extensions.

The following concepts are defined in terms of an argumentation framework

AF = (AR, attacks).

Definition. A set of arguments S ⊆ AR is conflict-free iff there does not exist A, B ∈ S

such that attacks(A, B).

Intuitively, then, a conflict-free set of arguments is simply a set of arguments which

do not attack each other.

Example 2. Considering the argumentation framework AFex from Example 1, we can

then identify the following conflict-free sets:

{ a, b }, { a, d }, { b, d }, { a, b, d }, { c, e}

12

Note that sets containing single arguments ({ a }, { b }, ...) are also conflict-free,

although trivially so.

Definition. An argument A ∈ AR is acceptable with respect to a set of arguments

S ⊆ AR iff for all B ∈ AR such that attacks(B, A), there exists C ∈ S such that

attacks(C, B)

An argument is then acceptable with respect to a set of arguments just in case the

argument is defended by that set; that is to say, if any argument attacking A is in turn

attacked by an argument in S, then A is acceptable with respect to S.

Example 3. Given the argumentation framework AF ex from Example 1, for a subset

of ARex such as S = { b, d }, we can see that a is acceptable w.r.t S, as all arguments

which attack a (the arguments c and e) are attacked by arguments in S. Further, b

and d are both acceptable w.r.t S, as all arguments attacking b and d are attacked by

arguments in S.

Definition. A set of arguments S ⊆ AR is admissible iff S is conflict-free, and ∀A ∈ S,

A is acceptable with respect to S

An admissible set of arguments can then be understood as a set of arguments which

do not attack each other, and also defend the set against attacks from arguments outside

the set.

Example 4. For the argumentation framework AF ex of Example 1, we can identify the

following admissible sets:

{ b }, { d }, { e }, { a, b }, { a, d }, { a, b, d }

Definition. The characteristic function of an argumentation framework AF is a function

FAF : 2AR → 2AR, defined as:

FAF (S) = {A | A is acceptable with respect to S}

13

Using the above concepts, we can now define the preferred extension, which is used

to define the credulous argumentation semantics, and the grounded extension used to

define the skeptical argumentation semantics.

Definition. A preferred extension of an argumentation framework AF is an admissible

set S ⊆ AR which is maximal with respect to set inclusion

Example 5. Using the argumentation framework defined in Example 1, by examining

the admissible sets identified in Example 4, it should be readily apparent that the set

{ a, b, d } is the only preferred extension of AF ex.

Definition. The grounded extension of an argumentation framework AF is the least

fixed point of the characteristic function FAF , denoted GEAF

Example 6. Once again using the argumentation framework AF ex of Example 1, the

grounded extension GEAFex can be computed through the following procedure:

FAFex (∅) = { d }

FAFex ({ d }) = { d }

and so GEAFex = { d }

As can be seen from Examples 5 and 6, the grounded extension is a far more restrictive

notion of argument acceptability than the preferred extension. Intuitively, this is because

the grounded extension needs to be “grounded” in a set of arguments which are accept

able with respect to the empty set, and therefore do not need to be defended by other

arguments, whereas the preferred extension is based on the idea of finding the largest

set of arguments which provide collective defense for one another. The grounded and

preferred extensions can then be seen as intuitively relating to the concepts of skepticism

and credulity respectively, from which their respective semantics glean their names.

14

Definition. An admissible set of arguments S ⊆ AR is a complete extension iff for

every argument A ∈ AR which is acceptable w.r.t S, A ∈ S. Defined in terms of the

characteristic function FAF , S is a complete extension iff FAF (S) = S.

The grounded, preferred and complete extensions are then related by the following

properties [Dun95]:

1. Every preferred extension is a complete extension, but not every complete extension

is a preferred extension.

2. The	 grounded extension is the smallest complete extension with respect to set

inclusion.

3. The set of complete extensions of an argumentation framework form a complete

semilattice with respect to set inclusion.

2.3 Structured Arguments

Abstract argumentation provides a means to evaluate systems of arguments, yet it is

notably abstracted away from the content of the arguments themselves. For practical

purposes, it is useful to represent arguments as structures built out of sentences in a

particular language, rather than as abstract argument entities. In this way, relations

between arguments may be computed on the basis of the content of arguments, making

use of relations between sentences in the language from which arguments are constructed.

While sentences in natural languages could be used to form the content of structured

arguments in automated argumentation, the meaning of and relations between natural

language sentences cannot be easily computed. Instead, arguments used in automated

argumentation are constructed out of sentences in formal logical languages, in which the

meaning of sentences and relations between them may be precisely defined and computed.

15

Natural language argumentation makes use of well-defined argument structures, such

as the syllogism and enthymeme. The structures used in automated argumentation are

generally inspired by those used in natural language argumentation, albeit defined for

mally and often in terms of the underlying logical language. While the structural de

tails of arguments may vary between different formal systems of automated argumen

tation, all share a common structural feature of distinguishing a conclusion of the ar

gument, and the premises which support the conclusion. Many argumentation systems

[PSJ98, APM00, AMP00, BH01, PWA03, BH05] make use of the following argument

structure:

Definition. Let L be a formal logical language, where ΣL is the set of all formulae which

may be constructed out of L.

An argument is a pair (Φ, α) where Φ ⊆ ΣL is a set of formulae supporting a conclusion

formula α ∈ ΣL, such that:

1. The support set Φ is consistent: Φ f ⊥

2. The conclusion α is a logical consequence of Φ: Φ f α

3. Φ is a minimal set satisfying (1) and (2): there is no Φ' ⊂ Φ such that Φ' f ⊥∧Φ' f α

In an argumentation system, arguments are usually drawn from a knowledge base Δ ⊆

ΣL, as it is often undesirable to allow arguments to be constructed out of any formulae

expressible in the underlying language. For a given argument (Φ, α) and knowledge base

Δ, it is generally the case that Φ ⊆ Δ, yet α /∈ Δ; an argument’s support should be

based on existing knowledge, yet the conclusion is generally new knowledge derived from

the existing knowledge.

Further, it is not necessary that the knowledge base Δ is consistent. In fact, it is

generally assumed that Δ f ⊥, as one of the primary reasons for employing argumen

tation techniques is to deal with inconsistent knowledge. Using the above definition of

16

an argument, it is nonetheless necessary that the support set Φ ⊆ Δ is consistent, even

if Δ is not. If it were allowable that Φ f ⊥, then an inconsistent support set Φ could

be used as support for any conclusion, since if Φ f ⊥, then for all α ∈ ΣL such that

Φ f α. In general, then, the process of argumentation is used to identify consistent sets

of support in an inconsistent knowledge base in order to justify conclusions outside the

knowledge base. Since opposing arguments may be drawn from the same inconsistent

knowledge base, the justification status of an argument cannot be determined on the

basis of the content of the argument alone, but rather must be based on the relations to

other arguments drawn from the knowledge base, as discussed in Section 2.2.1.

2.3.1 Attack Relation Semantics

In abstract argumentation, where arguments are merely abstract entities without struc

ture or content, it is sufficient to simply enumerate the relations between arguments. This

is useful when investigating the semantics of justification, or other properties of the argu

mentation framework, where the details of argument content are inconsequential, as it is

the network of relations between arguments that is important in this context. However,

in a practical argumentation system, where arguments are constructed out of formulae

in an underlying logical language, the relations between arguments are based on rela

tions between their composite formulae. For a sufficiently expressive underlying logical

language, such as First Order Logic, there are an infinite number of possible arguments,

and so these relations must be computed dynamically during argument evaluation.

The primary relation of interest in all argumentation systems is the attacks relation.

Following the work of John Pollock [Pol91], most argumentation systems make use of

two different kinds of attack relations: the rebuttal, and the undercut. Informally, a

rebuttal is a reason for denying the conclusion of an argument, whereas an undercut is a

reason for denying the connection between an argument’s support and its conclusion. In

17

the context of the argument structure presented in Section 2.3, these relations may be

generally expressed as follows:

Definition. An argument (Φ, α) is a rebuttal of an argument (Ψ, β) iff α and β conflict.

Definition. An argument (Φ, α) is an undercut of an argument (Ψ, β) iff α and Ψ conflict.

Both rebuttal and undercut are based on the concept of conflict between composite

elements of the arguments involved. The specific means of expressing conflict in particular

argumentation systems is dependant on the underlying logic employed by the system.

However, in general, composite elements (logical sentences) of arguments conflict if the

elements together derive a contradiction. For example, consider Besnard and Hunter’s

definitions of rebuttal and undercut for a system of argumentation based on classical

propositional logic [BH01] :

Example 7. An argument (Ψ, β) is a rebuttal for an argument (Φ, α) iff β ↔ ¬α is a

tautology.

Let Δ be the knowledge base { a ∧ c, ¬b → d, a → ¬(b ∨ c), ¬d }

Let A1 be the argument ({ a → ¬(b ∨ c), a ∧ c }, a → ¬b)

A1 can be verified as a valid argument by testing that:

1. The support set is consistent:

{ a → ¬(b ∨ c), a ∧ c } f ⊥

2. The conclusion is a logical consequence of the support:

{ a → ¬(b ∨ c), a ∧ c } f (a → ¬b)

3. The support is minimal w.r.t set inclusion:

there is no Φ ' ⊂ { a → ¬(b ∨ c), a ∧ c } such that Φ ' f a → ¬b

Now, let A2 be the argument ({a ∧ c, ¬b → d, ¬d}, a ∧ b)

18

As with A1, A2 can be tested for validity in accordance with conditions 1, 2 and 3

above.

Finally, a rebuttal between A1 and A2 can be determined by testing whether

((a ∧ b) ↔ ¬(a → ¬b)) f T. A simplified proof of this is as follows:

1. ((a ∧ b) ↔ ¬(a → ¬b)) f T

2. ((a ∧ b) ↔ ¬(¬a ∨ ¬b)) f T (re-write consequence as disjunction)

3. ((a ∧ b) ↔ (a ∧ b)) f T (by De Morgan’s law)

4. D

Therefore, A2 is a rebuttal of A1 (and conversely, A1 is a rebuttal of A2, as rebuttals

are symmetric attack relations).

While this definition formulates conflict between the conclusions as testing for a tau

tology (β ↔ ¬α f T), this is equivalent to deciding the contradiction β ↔ α f ⊥. As will

be discussed in Chapter 3, expressing such conditions as the derivation of a contradiction

rather than a tautology is more efficient when using a refutation based theorem prover.

Example 8. An undercut for an argument (Φ, α) is an argument (Ψ, ¬(φ1 ∧ ... ∧ φn))

where {φ1, ..., φn} ⊆ Φ.

Let Δ = { a → b, a ∧ c, d → ¬a, d }

Then the argument ({ a ∧ c, a → b }, b) is undercut by the argument

({ d, d → ¬a }, ¬(a ∧ c))

This definition of the undercut attack relation illustrates a more direct means of iden

tifying conflict, as it does not rely on deduction. It is only necessary that the conclusion

of the attacking argument is the negation of a subset of elements from the support of the

attacked argument.

In contrast, consider Amgoud et al ’s definition of the undercut relation, from [AMP00]

19

Example 9. An argument (Φ, α) is undercut by an argument (Ψ, β) iff there exists φ ∈ Φ

such that φ ≡ ¬β

Let Δ = { a → b, a ∧ c, d → ¬a, d }

Then the argument ({ a ∧ c, a → b }, b) is undercut by the argument

({ d, d → ¬a }, ¬a ∨ ¬c)

Note that these arguments in Example 9 do not satisfy the conditions for Besnard

and Hunter’s undercut relation described in Example 8, as it is not the case that the

conclusion of the attacking argument is the negation of a conjunction of elements of the

support of the attacked argument. Amgoud’s definition is therefore a more inclusive

definition of undercut, and similar to Besnard and Hunter’s definition of rebuttal in

Example 7, this definition relies on deduction, as deciding that φ ≡ ¬β is equivalent to

deciding φ ↔ ¬β f T, or rather, that φ ↔ β f ⊥.

2.3.2 Attack Relations, Argument Evaluation and Deduction

In order to determine the justification status of an argument, it is necessary to compute

attack relations between arguments, as the argument’s justification status is determined

as a property of the attack relation graph in the argumentation framework. As seen in

Section 2.3.1, computing an attack relation between two arguments may involve deduc

tion, such as in the rebuttal relation described in Example 7, in which it is necessary to

test whether β ↔ α f ⊥ to determine whether the conclusions of the arguments conflict.

It may be that testing for a particular attack relation between two given arguments

does not require deduction, as in the undercut relation described in Example 8. Deduction

is nonetheless a necessary component procedure of the argument evaluation process for

argumentation systems in which the set of all arguments cannot be pre-computed. Given

an argument (Φ, α) and a knowledge base Δ, argument evaluation involves searching for

arguments (Ψ, β) such that (Ψ, β) attacks (Φ, α). If the attacks relation being used is, for

20

instance, the undercut relation described in Example 8, this requires searching for a set

Ψ ⊆ Δ such that Ψ f ⊥ and Ψ f β where β = ¬(φ1 ∧ ... ∧ φn) such that {φ1, ..., φn} ⊆ Φ.

While in simple cases it may be that β ∈ Δ, such that ({ β }, β) undercuts (Φ, α), in

general it is necessary to search for a consistent subset of Δ that deductively entails β.

Therefore, regardless of whether deduction is used to define an attack relation, searching

for attacking arguments during argument evaluation nonetheless requires deduction.

2.4 Argumentation in Multi-Agent Systems

As discussed in Section 2.1, the goal of argumentation is to determine the justification

status of a claim with respect to a incomplete, inconsistent or imperfect knowledge base.

Early investigations into automated argumentation [Dun95, Lou98, PS99] focused on us

ing argumentation as a form of logic programming, where for a given knowledge base, the

justification status of a claim could be computed by the dialectic proof procedure using

particular argumentation semantics. Given that the field of automated argumentation

draws inspiration from natural language argumentation, and further that the justification

procedure is modelled after a dialogue between two parties, argumentation has naturally

been adapted as a means of communicative interation between agents in a multi-agent

system.

While multi-agent argumentation systems make use of concepts developed in ear

lier argumentation systems, there are nonetheless significant differences between these

branches of automated argumentation. Although agents in multi-agent argumentation

systems may assume the roles of pro and con in a given dialogue, these roles are not

identical to the roles of pro and con in the dialectic proof procedure, particularly due

to the information available to these different entities. In a multi-agent system, argu

mentative agents generally possess individual knowledge bases, and so agents involved in

21

an argumentative interaction do not have complete access to all information which may

be used to construct arguments during the interaction. Further, these agents generally

possess individual goals, which may warrant their strategic manipulation of the argumen

tative interaction. When argumentation is implemented as a form of logic programming,

however, both parties have access to the same information, and both have the same goal

of determining the justification status of a claim.

2.4.1 Dialogue Games

The interactions between agents in a multi-agent argumentation system are controlled

by a dialogue game, which defines rules regarding which “moves” may be made by par

ticipants at each stage of the interaction. The game consists of a set of two or more

participants (agents), a set of locutions defining structured utterances which can be

made by the participants, and a public commitment store containing the propositions

which the various participants have committed to. Further, the interaction between

the participants is controlled by a system of rules, which may be categorized as follows

[MP02]:

•	 Commencement Rules: rules defining the conditions under which a dialogue

may begin.

•	 Locutions: rules describing which utterances a participant may make, and the

structure of these utterances.

•	 Combination Rules: rules defining the conditions under which particular locu

tions may be permitted.

•	 Commitments: rules defining the conditions under which a participant expresses

commitment to a proposition.

22

•	 Termination Rules: rules describing the conditions which cause the interaction

to end.

While the commencement and termination rules control the dialogue itself, the locu

tion, combination and commitment rules control the individual moves made by players

within the dialogue. A move in the dialogue is often defined as a structure containing a

locution rule describing the structure of the utterance, combination rules describing the

conditions under which the move is allowed, and commitment rules describing how the

participants commitment stores are updated. For example, consider the following defini

tion of the assert locution from [AMP00], wherein participant P is addressing participant

C:

Example 10. assert(p) - where p is a propositional formula

Rationality - the player uses its argumentation system to check if there is an ac

ceptable argument for p

Dialogue - the other player can respond with:

1.	 accept(p)

2. assert(¬p)

3.	 challenge(p)

Update - CSi(P) = CSi−1(P) ∪ {p} and CSi(C) = CSi−1(C)

In this example, the locution rule states that the utterance is structured as the term

“assert” followed by a propositional formula surrounded by parentheses. The combination

rules for this locution include the rationality rule, which states the conditions under which

this locution may be performed, and the dialogue rule, which describes locutions the other

agent may make in response to this locution. Finally, the participants’ commitments are

modified through an update rule, which describes how the commitment stores of each

23

Table 2.1: Walton and Krabbe’s Dialogue Type Classification

Dialogue Type Initial Situation Participant’s Goal Dialogue Goal
Persuasion Conflicting opinions Persuade other Resolve conflict

participant

Inquiry Need for proof Find and verify Prove or disprove
evidence hypothesis

Negotiation Conflicting desire Maximize resources Reasonable
for resources attained distribution

Information A participant Give or receive Information exchange
Seeking lacks information information

Deliberation Situation requiring Co-ordinate goals Find best course
action or actions of action

player is updated as a result of the locution be uttered (where CSi(P) refers to the set

of propositions committed to by player P at time i).

In addition to the rules used in dialogue games, different dialogue game types can be

identified by higher level concepts such as the initial situation, the goal of the participants,

and the overall goal of the dialogue. Walton and Krabbe [WK95] have identified a set

of basic dialogue types, which include: persuasion dialogues, in which a participant

attempts to convince its counterpart to accept a proposition, inquiry dialogues, wherein

participants collectively attempt to answer a question, negotiation dialogues, in which

participants argue over the division of resources, information seeking dialogues, wherein

a participant seeks the answer to a question from others, and deliberation dialogues,

in which participants collectively determine a course of action to take for a particular

situation. The details of these different types of dialogues are summarized in Table 2.1,

adapted from [AMP00].

24

2.4.2 Semantics of Assertion and Acceptance

In multi-agent argumentation systems, the goal of an interaction is generally more com

plex than simply determining the justification status of a claim, as discussed in Sec

tion 2.4.1. However, the process of determining the justification status of a claim nonethe

less plays a role in multi-agent argumentation. When an agent receives an argument from

its counterpart in a dialogue game, the agent must determine whether or not it will ac

cept the argument. To make this decision, the agent needs to determine the justification

status of the argument with respect to its knowledge base, using a particular argumen

tation semantics. Further, when asserting an argument to its counterpart, an agent also

needs to test the justification status of the argument, in order to decide whether the

argument is worth transmitting to its counterpart. In both cases, the dialectic proce

dure described in Section 2.2.1 may be used to determine the justification status of the

argument, although the argumentation semantics used in each case are not necessarily

equivalent.

The particular semantics used by an agent is referred to as the agent’s attitude, which

is further divided into an assertion attitude describing the conditions under which an

agent may assert an argument, and an acceptance attitude describing the conditions under

which an agent will accept an argument. While there are common terms used to refer

to agent attitudes, such as skeptical or credulous acceptance attitudes, the particular

semantics related to these attitudes varies from system to system, depending on the

argumentation framework used by the system. These attitudes are often related in their

general concepts, however, insomuch as a skeptical agent will generally be more restrictive

than a credulous agent in the arguments they accept.

Parsons et al. define the following assertion and acceptance attitudes [PWA03] for

arbitrary agents G and H engaged in a dialogue, either of which may be in the role of

pro or con. These attitudes are defined in terms of a preference-ordered argumentation

25

framework, which will be described briefly as well.

Example 11. Agent attitudes in a preference-ordered argumentation framework

Let AF = (A(Σ), Undercut, P ref)

where A(Σ) is the set of arguments that can be built from the set of formulae Σ

and Undercut ⊆ A(Σ) ×A(Σ) is the binary undercut relation between arguments

and P ref is a (partial or complete) pre-ordering on A(Σ) ×A(Σ)

»P ref •	 For A1, A2 ∈ A(Σ), if A1 A2 then A1 is stronger than A2

•	 For A1, A2 ∈ A(Σ), if A2 undercuts A1, then A1 defends itself against A2

»P ref iff A1 A2

•	 For S ⊆ A(Σ), A ∈ A(Σ), S defends A iff for all B ∈ A(Σ) such that

B undercuts A and A does not defend itself against B then there exists C ∈ S

such that C undercuts B and B does not defend itself against C

•	 Let F(S) = { A ∈ A(Σ) | S defends A }, where S ⊆ A(Σ)

•	 The set of acceptable arguments SΣ is the least fixpoint of the function F

Let A(G, H) = A(ΣG ∪ CS(H))

where ΣG is the knowledge base of agent G

and CS(H) is the public commitment store of agent H

Assertion attitudes

•	 If G is confident, then it can assert any proposition α for which there is an argument

(Φ, α) ∈ A(G, H)

•	 If G is careful then it can assert any proposition α for which there is an argument

(Φ, α) ∈ A(G, H) and no stronger argument (Ψ, ¬α) ∈ A(G, H)

•	 If G is thoughtful then it can assert any proposition α for which there is an accept

able argument (Φ, α) ∈ A(G, H)

26

Acceptance attitudes

•	 If G is credulous then it can accept any proposition α previously asserted by H if

(Φ, α) ∈ A(G, H)

•	 If G is cautious then it can accept any proposition α previously asserted by H for

which there is an argument (Φ, α) ∈ A(G, H) and there is no stronger argument

(Ψ, ¬α) ∈ A(G, H)

•	 If G is skeptical then it can accept any proposition α previously asserted by H for

which there is an acceptable argument (Φ, α) ∈ A(G, H)

In comparison to the extensions described in Section 2.2.2, the assertion and accep

tance attitudes also use extension-based semantics which are defined in terms of relations

in the argumentation framework, rather than the content of arguments themselves. How

ever, while the agent attitudes described above make use of terms such as credulous and

skeptical, these are quite different from the credulous and skeptical semantics defined by

Dung [Dun95]. For instance, the credulous argumentation semantics of Dung makes use

of the preferred extension, which may intuitively be described as a maximal set providing

collective defense for its elements. In contrast, the semantics used by the credulous agent

attitude described above does not take into account attack relations between arguments,

but rather only requires that an argument can be constructed for the proposition, result

ing in a far more inclusive definition of credulous semantics. This is generally indicitive

of the state of the field of automated argumentation, as commonly used terms are often

re-defined to suit an author’s particular purposes.

2.4.3 Argumentation in Open Multi-Agent Systems

An important distinction in multi-agent systems is the difference between closed and open

multi-agent systems. In a closed multi-agent system, agents are designed and controlled

27

by a single entity1, and the agents run on trusted resources under the control of that

entity. In contrast, an open multi-agent systems allows for agents that are designed and

controlled by different entities, and the agents may run on untrusted and failure prone

resources. Where in a closed multi-agent system agent interactions are ultimately gov

erned by the design of the agents, in an open multi-agent system the agents’ interactions

may be governed only through protocol, as the agents may be designed by many different

entities. Open multi-agent systems therefore allow for the possibility of malicious agents

that pursue their own goals by subverting the intention of the system towards their own

ends. Malicious agents are distinct from competitive agents in that, while competitive

agents pursue their own goals, they nonetheless “play fair” with other agents, whereas

malicious agents will attempt to exploit and subvert the system in order to achieve their

goals.

Argumentation has been proposed as a means of interaction between agents in open

multi-agent systems, for applications such as automated negotiations in E-Commerce sys

tems [BN02a, BN02b] and as a general means of negotiating agent rights in open multi-

agent systems [Alo04]. However, while security measures have been studied to counteract

malicious agents in general open multi-agent systems [SC00], little attention has been

paid to the unique challenges of malicious behaviour in open multi-agent argumentation

systems. Recently, Rahwan and Larson [RL08] investigated the possibility of malicious

agents strategically withholding information in order to manipulate the outcome of ar

gumentative interactions. Further, the research of P.E. Dunne [Dun03] investigates the

strategic manipulation of dialogue games, whereby a malicious agent may attempt to

delay a particular conclusion until the resource bounds of the dialogue game have been

exhausted, and therefore manipulate the outcome of the interaction. In this thesis, how

1This is not to say that agents in a closed MAS are necessarilly centrally controlled, but rather that
they are instantiated and terminated by a single entity

28

ever, the focus is on malicious agent strategies designed to exploit the resource bounds

of another agent in order to manipulate the outcome of the argumentation process.

2.5 Resource Bounded Argumentation

Agents interacting within an environment must make decisions as to which actions to

perform in the situations they find themselves, and these decisions are based on a process

of reasoning. The reasoning process, however, is non-trivial, and may be intractably

complex due to the logics, knowledge and computations used to make these decisions.

Nonetheless, agents need to make decisions in a timely fashion, as the situation may be

dynamically changing during the reasoning process, and the results of a lengthy decision-

making computation may be inapplicable upon completion. It is therefore necessary for

practical purposes that agents’ decision procedures are resource bounded [BIP88].

When argumentation is used in practical systems, then resource bounds must be im

posed. Particularly when argumentation is used in a multi-agent system, either as a

decision support mechanism [KM03] or as a means of communicative interaction with

other agents [APM00, PSJ98], the amount of time consumed by the argumentation pro

cess must be limited in order for agents to act in a timely fashion. The specific resource

limit may either be self-imposed by the agent, or dictated by protocol, as is typical when

agents are engaged in communication.

The highest level at which resource bounds must be placed on the argumentation

process is at the level of the dialogue game. Given the possibility of infinitely long, or

even extremely long finite lines of argumentation, it is necessary to impose a limit on the

resources consumed during the dialogue as a whole [Lou98]. In terms of the categorization

of dialogue rules given in Section 2.4.1, such a resource limit would be formalized as a

termination rule for the dialogue, although resource exhaustion isn’t the only condition

29

under which dialogue termination could occur2 .

The next level at which resource limitations must be considered concerns the locution

decision procedure used by agents to determine which “move” to play during their turn

of the dialogue. As discussed in Section 2.4.2, this procedure involves an agent testing

the acceptability of their counterpart’s previous move, and subsequently searching for an

argument to respond with which is admissible in accordance to their assertion semantics.

Depending on the particular argumentation semantics used for these purposes, an agent’s

locution decision procedure may involve lengthy or even intractable search processes.

However, if this procedure is not bound by resource constraints, an agent could surpass

the resource limit of the dialogue while deciding its next move, either unintentionally or

strategically, preventing its counterpart from engaging in the dialogue. In the interest of

fairness, then, it is necessary to evenly distribute resources between all parties engaged

in the dialogue [Lou98], and therefore it is necessary to limit the resources consumed by

agents’ locution decision procedures during each turn of the dialogue game.

Finally, at the lowest level, it may be necessary for agents to impose resource limits

on the attack relation decision procedure. If an agent is using a sufficiently expressive

underlying logical language to express the content of arguments, such as first-order pred

icate logic [BH05], deciding deduction may be an intractable procedure. As discussed in

Section 2.3.1, the attack relation is often based on deciding deductive relations between

component formulae of arguments. Given that most argumentation semantics involve

computing attack relations between numerous arguments, it is necessary to distribute

the resources allocated to the argument evaluation procedure amongst the individual

attack relation computations. While an agent may or may not use a fairness criteria to

evenly distribute these resources, however, any one attack relation decision is maximally

2Rather, it is preferable for a dialogue to terminate “naturally” due to a particular state of the
dialogue being reached rather than “un-naturally” due to resource exhaustion

30

bounded by the resource limit of the argument evaluation procedure, which is in turn

bounded by the resource limit of locution decision during an agent’s turn in the dialogue

game.

31

Chapter 3

Automated Theorem Proving

This chapter is intended to provide the reader with enough background information on

automated theorem proving to understand its use in the context of this thesis. The

chapter is organized as follows: in Section 3.1, a general description of logics is provided,

which includes a description of the logical language by which formulae are constructed,

the truth domain onto which logical formulae are evaluated, and the semantics of this

evaluation. In Section 3.2, the logical calculus is described, which provides the means

of syntactic evaluation and manipulation of logical formulae. Section 3.3 then describes

the relations of soundness and completeness between the semantic evaluation defined

by the interpretations and the syntactic evaluation defined by the calculus. Finally, in

Section 3.4, the search control is described, which provides the means by which the proof

of theorems may be automated.

3.1 Logics

Informally, a logic is a means to relate formal syntax and semantics. Syntax deals with

representation; the collection of symbols used, and the ways they can be combined to

gether. In logics, the syntax is formal, in that the representational constructs must

adhere to specific rules, and do not permit the breaking of these rules for artistic reasons

or otherwise, as might be permitted in natural languages. Conversely, semantics deals

with the meaning of these syntactic constructs; again, in logics, semantics is formal

ized. Whereas meaning in natural languages is often open to individual interpretation

or ambiguity, the semantics of logics are based on strict formal rules. The meaning of

32

an expression in a logic is determined by its relation to the truth-domain of the logic via

interpretation. Interpretation, as it relates to logics, is once again a formalized notion,

rather than the notion of interpretation used in natural languages. For each syntactic

symbol or structure of a logic, an interpretation assigns either a member of the truth

domain, the object domain, or a relation between these domains. While a logical expres

sion can be evaluated in relation to a particular intended interpretation, it is often the

case that we are interested in evaluating an expression in relation to many or all possible

interpretations. For instance, it is often desirable to determine whether an expression is

tautological or contradictory; that is to say, whether an expression is evaluated as true

or false, respectively, under all possible interpretations. Given this informal description

of logics, we now turn towards a formal definition.

Definition. A logic is represented as a triple (L, W , I), where:

• L is the language of the logic, which defines the syntax of the logic, expressed as

the set of all well-formed formulae.

• W	 is the truth-domain of the logic, a set of truth-values onto which formulae are

evaluated.

• I is the set of all interpretations of the logic, defining the logic’s semantics.

3.1.1 The Logical Language L

The language of a logic defines the syntactic form of valid expressions in that logic.

Similar to natural written languages, logical languages consist of expressions constructed

out of sequences of symbols in accordance with particular rules. The set of all symbols

from which these sequences are constructed is also referred to as an alphabet, which is

divided into several classes denoting the role of each symbol. For convenience, symbols

used in logics are often borrowed from the Roman and Greek alphabets, although it

33

should be noted that these logics are in no way bound to those particular symbols;

rather, it is important only that the different classes of symbols are unique in order to

avoid ambiguity.

Definition. An alphabet is a set of symbols used by a language, divided into distinct

classes of symbols. In general, logical languages can be described by the following ten

classes of symbols:

1.	 constants (C) - symbols which reference a particular object in the domain, often

denoted by lowercase letters at the beginning of the roman alphabet, ie: a, b, c

2.	 variables (V) - symbols which may reference any object in the domain, often de

noted by lowercase letters at the end of the roman alphabet, ie: x, y, z

3.	 functions (F) - symbols referencing a mapping between n domain objects onto a

single domain object, often denoted by lowercase roman letters such as f, g, h

4.	 function variables (FV) - symbols referencing any mapping between n domain

objects onto a single domain object

5.	 predicates (P) - symbols referencing a mapping between n domain objects onto a

single truth value, often denoted by uppercase roman letters such as P, Q, R

6.	 predicate variables (PV) - symbols referencing any mapping between n domain

objects onto a single truth value

7.	 interpreted predicates (PI) - symbols referencing a mapping between n domain

objects onto a single truth value, for which the interpretation is constant

8.	 junctors (J) - symbols referencing a mapping between n (where n is generally 1 or 2)

truth values onto a single truth value, denoted by symbols such as ∨, ∧, ¬, →, ↔

9.	 quantifiers (Q) - symbols referencing a construct which specifies a quantity of the

object domain over which an open variable in a particular formula is assigned,

34

mapping onto a truth value; quantifiers are denoted by symbols such as ∃, ∀

10.	 punctuation - symbols used to denote groupings of other symbols, or to provide

clarification and readability, such as (,) and ,

Example 12. Propositional logic is a logic which contains only predicate variables, re

ferred to as propositions, and the basic set of logical junctors. Additionally, it may

be convenient to defined a few interpreted predicates for a propositional logic, such as

true and false. Since propositional logic does not make use of an object domain, there

are no object domain variables, constants, functions, function variables, predicates or

quantifiers.

The alphabet of propositional logic can be described by the following sets of symbols:

• Predicate variables PV = { p, q, r, ... }

• Interpreted predicates PI = { true, false }

• Junctors J = { ∨, ∧, ¬, →, ↔}

• C	 = V = F = FV = P = Q = ∅

Example 13. First-Order Predicate Logic includes object domain variables and con

stants, as well as functions, predicates, the basic set of logical junctors, and the exis

tential and universal quantifiers. While more robust than propositional logic, first-order

predicate logic still does not permit the use of function or predicate variables.

The alphabet of first-order predicate logic can by the following sets of symbols:

• Constants C = { a, b, c, ... }

• Variables V = { x, y, z, ... }

• Functions F = { f, g, h, ... }

35

•	 Predicates P = { P, Q, R, ... }

•	 Junctors J = { ∨, ∧, ¬, →, ↔}

•	 Quantifiers Q = { ∃, ∀ }

•	 PV = PI = FV = ∅

Sequences of symbols from the alphabet of a logic are referred to as expressions in

that language. However, not all expressions are valid; the set of all expressions in a

language is the set of all possible sequences of the symbols of that language’s alphabet.

Those expressions which are valid in a given language are referred to as the formulae of

that language.

Definition. The language L of a logic is the set of all formulae of that logic, where these

formulae consist of a sequence of symbols from an alphabet composed in accordance with

specific formation rules.

The formulae of a logical language L are constructed in accordance with certain for

mation rules. These formation rules are used to define two groups of syntactic constructs:

the terms, which are to be evaluated to elements of the object-domain, and well-formed

formulae, which will evaluate to elements of the truth-domain. The set L consists only

of well-formed formulae, where the terms of a language are constituent parts of the well-

formed formulae.

Definition. A term is defined recursively as follows:

•	 Any variable symbol v ∈ V is a term

•	 Any constant symbol c ∈ C is a term

•	 If f ∈ F is an n-ary function symbol and t1, ..., tn are terms, then f(t1, ..., tn) is

a term

36

• If g ∈ FV is an n-ary function variable symbol and t1, ..., tn are terms, then

g(t1, ..., tn) is a term

Definition. A well-formed formula (wff) is defined recursively as follows:

•	 If R ∈ P ∪ PI is an n-ary predicate symbol and t1, ..., tn are terms, then

R(t1, ..., tn) is a wff (these particular wffs are also known as atoms)

•	 If R ∈ PV is an n-ary predicate variable symbol and t1, ..., tn are terms, then

R(t1, ..., tn) is a wff

•	 If * ∈ J is an n-ary junctor and α1, ..., αn are wffs, then *(α1, ..., αn) is a wff 1

•	 If α is a wff, x ∈ V ∪ FV ∪ PV is a variable, and D ∈ Q is a quantifier, then D x • α

is a wff

Example 14. In propositional logic, the sets of interpreted predicates PI and predicate

variables PV contain only 0-ary symbols. Using the alphabet described in Example 12,

consider the following expressions:

1.	 p ∨ q ∧ (r → true)

2.	 → (∧(q, ¬(r)), ∨(q, p))

3.	 p(r) → (q ∨ r)

4.	 r ↔ ¬q(p ∨ r)

Expressions 1 and 2 are valid well-formed formulae, where as 3 and 4 are not. Note

that propositional logic does not contain any terms, as it does not use an object domain,

but rather has only symbols which evaluate onto the truth domain.

1note that unary junctors are often written in prefix notation as *α1, and binary junctors often are
written in infix notation as α1 * α2

37

3.1.2 Normal Forms

When implementing a theorem prover, it is often necessary to transform formulae from

their general form as described by the logical language into a specific normal form, in

order to facilitate the particular calculus being used. In resolution-based theorem proving

for first-order predicate logic, formulae are generally converted to clausal normal form,

in which clauses are disjunctions of literals, and sets of clauses represent the conjunction

of their elements.

Definition. A literal is either an atom or the negation of an atom, where the former is

known also as a positive literal and the latter as a negative literal.

Definition. A clause is a formula of the form:

∀ x1, ..., xn (L1 ∨ ... ∨ Lm)

where L1, ... , Lm are literals (positive or negative) and x1, ... , xn are all variables

occuring in these literals.

It is often convenient to collect together positive and negative literals in the clausal

representation, and represent the clause as a conditional:

∀ x1, ..., xn (A1 ∨ ... ∨ Ai ∨ ¬B1 ∨ ... ∨ ¬Bj)

∀ x1, ..., xn (A1 ∨ ... ∨ Ai ← B1 ∧ ... ∧ Bj)

3.1.3 The Truth Domain W

The truth domain W is the set of values onto which formulae in a logic are evaluated.

Commonly, logics make use of the boolean truth domain { true, false }, although in

general they are not restricted to just this domain. Many-valued logics may introduce

additional truth values to the boolean domain, such as unknown, undecidable, etc., or they

may make use of infinite truth domains, such as the interval of real numbers [0,1] used in

many probabilistic logics. Further, some many-valued logics express the truth-domain as

38

complex structures such as trees, graphs or lattices, in order to express complex relations

between the various truth values.

3.1.4 The Interpretations I

An interpretation is a method of assigning meaning to symbols in a logical language,

thereby creating the semantics for a logic. Symbols are interpretted by assigning to them

either a member of an object-domain, a member of the truth domain, or a mapping

between these domains.

Definition. Formally, an interpretation I consists of:

1. A non-empty set D, known as the object domain of the interpretation

2. An assignment of an element of D to each constant in C

3. An assignment of an element of D to each variable in V

4. A mapping Dn → D for each n-ary function symbol in F

5. A mapping Dn → D for each n-ary function variable symbol in FV

6. A mapping Dn → W for each n-ary predicate symbol in P

7. A mapping Dn → W for each n-ary predicate variable symbol in PV

8. A mapping Dn → W for each n-ary interpreted predicate symbol in PI

9. A mapping Wn → W for each n-ary junctor in J

10. A combination rule for truth values in W for each quantifier D in Q, such that

I(D x • α) is determined by combining the truth values of all formulae generated

by substituting the variable x in α with an arbitrary element of D, or the function

variable x in α with an arbitrary function over D of the correct arity, or the predicate

variable x in α with an arbitrary predicate with the correct arity

39

I = {I1, I2, ...} is then a set of interpretations, such that:

•	 Ii(R) = Ij (R) for all interpretations Ii, Ij and all interpreted predicate symbols

R ∈ PI

•	 Ii(*) = Ij(*) for all interpretations Ii, Ij and all junctor symbols * ∈ J

•	 Ii(D) = Ij (D) for all interpretations Ii, Ij and all quantifier symbols D ∈ Q

Example 15. Using the alphabet defined for propositional logic in Example 12, consider

the formula ¬p∨q. Using the boolean truth-domain Wbool = {true, false}, both predicate

variable symbols p and q may be interpreted as true or false.

The junctor ¬ is unary, interpreted as:

•	 I(¬(true)) = false

• I(¬(false)) = true

The junctor ∨ is binary, interpreted as:

•	 I(∨(false, false)) = false

•	 I(∨(false, true)) = true

•	 I(∨(true, false)) = true

• I(∨(true, true)) = true

The set of all possible interpretations for ¬p ∨ q is then : I = {

•	 I0 : I(p) = false, I(q) = false : I(¬p ∨ q) = I(∨(I(¬(false)), false))

= I(∨(true, false))

= true

40

•	 I1 : I(p) = false, I(q) = true : I(¬p ∨ q) = I(∨(I(¬(false)), true))

= I(∨(true, true))

= true

•	 I2 : I(p) = true, I(q) = false : I(¬p ∨ q) = I(∨(I(¬(true)), false))

= I(∨(false, false))

= false

•	 I3 : I(p) = true, I(q) = true : I(¬p ∨ q) = I(∨(I(¬(true)), true))

= I(∨(false, true))

= true

}

3.1.5 Models and Satisfiability

Interpretations provide meaning for formulae in a logic. Once meaning has been estab

lished, it is necessary to then examine what kind of questions about formulae in a logic

we would want to answer. For a given formula in a particular logic, we are primarily

interested in questions about how the formula relates to elements of the truth domain

under the set of all interpretations I. For a boolean logic, such as propositional logic, we

are then interested in determining under which interpretations the formula evaluates to

true, and conversely under which interpretations it evaluates to false.

Definition. If a formula α ∈ L is true under a given interpretation I ∈ I, then I is a

model for α, expressed as |= I α.

When necessary, a superscript will be used with the model symbol to denote a par

ticular logic under which an interpretation is a model for a particular formula, such that

|=S
I α is to be interpreted as α is true under interpretation I for a logic S = (LS , WS , IS).

Definition. If there exists an I ∈ I such that |= I α, then α is satisfiable.

41

Definition. Conversely, if there does not exist an I ∈ I such that |= I α, then α is

unsatisfiable; a formula which is unsatisfiable is also referred to as a contradiction, as it

evaluates to false under every interpretation.

Definition. If every interpretation I ∈ I is a model for α, then α is a tautology, expressed

as |= α.

In addition to determining whether a particular formula is satisfiable, tautological,

contradictory, etc., it is often desirable to determine consequence relations under inter

pretations. That is to say, whether a formula is true under all interpretations which are

models for a specific set of formulae. Particularly, we are interested in determining this

consequence relation with respect to a distinguished set of formulae for the logic, known

as axioms.

Definition. Given a set of formulae Γ ⊆ L and a formula α ∈ L, if for all interpretations

I ∈ I such that |= I Γ it is the case that |= I α, then α is a theorem of Γ, denoted Γ |= α.

3.2 Logical Calculus

As stated in the previous section, the goal when using a logic is generally to evaluate

the relation between a formula or set of formulae and the truth domain under all in

terpretations in I. While it may be feasible to perform this evaluation under all the

interpretations for formulae in a simple logic, for complex logics permitting an infinite or

even large finite number of possible interpretations, such an evaluation is likely far too

computationally complex. The use of interpretations for explaining logical evaluation is

useful from a theoretical perspective, although for practical purposes it is insufficient as

a means of efficiently evaluating formulae. There is, however, another approach by which

formulae may be evaluated without the need for iterating over every possible interpreta

tion in the logic. By successively applying truth-preserving inference rules, formulae may

42

be re-written into a form for which the evaluation under all interpretations in I is known,

thereby effectively evaluating the formulae without the need for iterating over every in

terpretation from I. A system of inference rules, in combination with a distinguished set

of formulae known as axioms, is referred to as a logical calculus.

Definition. For a given logic (L, W , I), a calculus is a structure (A, R), where:

• A ⊆ L is a distinguished set of formulae, known as the axioms

• R is a set of truth-preserving inference rules

3.2.1 Inference Rules

Rather than simply working with individual formulae, theorem proving deals with col

lections of formulae, such as the axioms, the supporting formulae and the set of formulae

representing the theorem to be proved. In order to perform a proof, it is necessary that

these various collections of formulae be structured in a particular knowledge represen

tation. This representation may be as simple as a set containing all formulae in those

collections, or it may have a more complex structure such as a set of sets, a tree, or

otherwise. Given a particular knowledge representation, inference rules may be defined

to perform syntactic manipulation of the knowledge encoded in that representation.

Definition. An inference rule is a transformation on a knowledge representation, taking

the form: premise
conclusion

An inference rule is applied to a knowledge representation by first matching the

premise of the rule against components of the knowledge representation, and then re

placing those components matched by the premise with the conclusion of the rule to

create a new knowledge representation. An inference rule is correct just in case it pre

serves the truth-value evaluation of the knowledge representation across the transforma

43

tion. That is to say, if the initial knowledge representation is contradictory, then the

knowledge representation resulting from the application of the inference rule must also

be contradictory.

The purpose of inference rules is therefore to manipulate the syntax of the represented

knowledge while preserving the semantics. The goal of theorem proving is to demonstrate

that the theorem being proved is a semantic consequence of supporting formulae. This

can be accomplished by identifying syntactic properties of the knowledge representation

for which certain semantic properties are known. However, these syntactic properties may

not be immediately identifiable, in which case it is necessary to apply inference rules until

either the syntactic property in question can be easily identified, or it is impossible to

apply further inference rules to the knowledge representation.

Definition. A deduction from Δ to Φ, represented as Δ f Φ, is a means of establishing

that Φ is a syntactic consequence of Δ.

Let Φ ⊆ L and Δ ⊆ L be sets of formulae.

Let Γ0 be the initial knowledge representation of Φ and Δ, constructed in accordance

with a particular calculus C = (A, R), and Ψ ∈ L be a distinguished syntactic element

representing the goal.

Let α fr β represent the application of the single inference rule r ∈ R to the knowledge

representation α, the result of which is a new knowledge representation β.

If there exists a finite sequence of inference rules r1, ..., rk, where ri ∈ R for 1 ≤ i ≤ k,

such that Γ0 fr1 Γ1 fr2 ... frk Γk and Ψ ∈ Γk, then Δ f Φ. Otherwise, if no such sequence

exists, then Δ f Φ.

Where necessary, deduction using a particular calculus C = (A, R) will be denoted

fC .

44

3.2.2 Resolution

The resolution inference rule is used in refutation-based theorem proving, whereby the

theorem to be proven is negated and conjoined with the support, and the resolution

inference rule is applied until either the empty clause is syntactically derived, or no

further applications of the inference rule are possible. The goal is then to show that the

initial knowledge representation (the support set conjoined with the negated theorem) is

semantically contradictory, given that there exists a syntactic derivation to the empty set,

which is easily identifiable and known to be evaluated as false under all interpretations.

Formally, the resolution rule for first-order predicate logic can be written as:

α1 ∨ ... ∨ αi ∨ ... ∨ αn , β1 ∨ ... ∨ ¬βj ∨ ... ∨ βm

θ(α1 ∨ ... ∨ αi−1 ∨ β1 ∨ ... ∨ βj−1 ∨ βj+1 ∨ ... ∨ βm ∨ αi+1 ∨ ... ∨ αn)

where θ = mgu(αi, βj)

Essentially, the resolution inference rule is used to identify pairs of complementary lit

erals αi and ¬βj which are unifiable (unification will be discussed further in Section 3.2.3).

If two formulae α1 ∨ ...∨αn and β1 ∨ ...∨βm are identified which contain such complemen

tary literals, then the formulae can be re-written by removing the complementary literals

αi and ¬βj and combining what’s left of the formulae by disjunction, and applying the

unifier of αi and βj .

Example 16. Let Δ = {∀x • (¬P (x) ∨ Q(x)), P (a)} be a set of supporting formulae and

Φ = {∃y • Q(y)} be the theorem to be proved, both in first-order predicate logic.

The initial knowledge representation is then:

Γ0 = Δ ∪ ¬Φ = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y)}.

The distinguished syntactic element representing the goal is the empty set, Ψ = D.

By selecting the first two formulae of Γ0 and applying the resolution rule to the

complementary literals ¬P (x) and P (a) using the unifier {x ≈ a}, this results in the

45

formula Q(a).

Γ1 = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y), Q(a)}.

The resolution rule can further be applied to the formulae Q(a) and ¬Q(y) using the

unifier {y ≈ a}, which results in the empty set D.

Γ2 = {(¬P (x) ∨ Q(x)), P (a), ¬Q(y), Q(a), D}.

Since Ψ ∈ Γ2, by refutation, {∃y•Q(y)} has therefore been shown to be a consequence

of the set {∀x • (¬P (x) ∨ Q(x)), P (a)}.

3.2.3 Unification

When a logic uses variables, those variables may be substituted by simple or complex

terms, atoms or formulae, depending on the domain over which the variables vary. Infer

ence rules often require a comparrison between components of the premises or conclusion,

such as in Example 16 above, where the literals αi and βj need to be matched. Given

formulae in a first-order predicate logic, such as P (a) and ¬P (x) ∨ Q(x) in which a is

a constant, x is a variable and P and Q are predicates, it is necessary to match P (a)

and P (x) in order to execute the inference rule and achieve the result Q(a). To accom

plish this, a substitution needs to be applied to ¬P (x) ∨ Q(x) in which all occurances of

the variable x are replaced with the constant a. The application of this substitution to

the conditional would result in ¬P (a) ∨ Q(a), which can then be syntactically matched

against the formula P (a) in order to perform the resolution inference rule and derive the

conclusion Q(a). The process by which a substitution is found in order to make two or

more terms or formulae equivalent is known as unification.

Definition. A substitution is a finite set θ = { v1 ≈ t1 , ..., vn ≈ tn }, where each vi is

a variable, each ti is a term in which vi does not occur, and v1, ..., vn are each distinct.

The application of a substitution θ to a formula α results in a formula α ' in which all

occurances of the variable vi have been replaced with the term ti, for all 1 ≤ i ≤ n.

46

Example 17. Let α = P (x, y, f(x, a)) and θ = { x ≈ g(y), y ≈ b }.

Then θα = P (g(y), b, f(g(y), a)).

Definition. Let θ = { v1 ≈ t1 , ..., vn ≈ tn } and σ = { u1 ≈ s1 , ..., um ≈ sm } be

substitutions. The composition θσ of θ and σ is the substitution obtained from:

{ v1 ≈ σ t1 , ..., vn ≈ σ tn, u1 ≈ s1 , ..., um ≈ sm }

by removing any vi ≈ σ ti for which vi = σ ti and removing any uj ≈ sj for which

uj ∈ {v1, ..., vn}.

Definition. Let S = { s1 , ..., sn } be a finite set of expressions (terms, formulae,

etc.) and θ be a substitution. θ is a unifier for S if θS is a singleton; that is to say, if

θs1 = θs2 = ... = θsn. A unifier θ for S is a most general unifier (mgu) for S if for all

unifiers σ of S, there exists a substitution γ such that σ = θγ.

Example 18. S = { P (f(x), z), P (y, a) } is unifiable by σ = { y ≈ f(a), x ≈ a, z ≈ a }.

However, θ = { y ≈ f(x), z ≈ a } is a most general unifier for S, as σ = θ{x ≈ a}, and

there exists a suitable γ for other unifiers of S as well.

Unification therefore provides a useful tool by which equivalence of expressions can

be expressed in inference rules for logics which make use of variable symbols, such as

first-order logics.

3.3 Soundness and Completeness

It is not enough to simply have a system of inference rules with which to perform de

ductions on formulae in a logic. It is also necessary that the system of inference rules is

correct with respect to the logic. That is to say, if a formula can be derived through the

application of inference rules, then it also must be true under all interpretations. This

is known as the soundness property of a logical calculus. Conversely, it is also desirable

47

that there exist derivations for those formulae which are true under all interpretations, a

property which is known as completeness. Minimally, a logical calculus must be sound,

and to be robust it is also useful for it to be complete. Formally, these properties can be

defined as follows.

Definition. A logical calculus C = (A, R) is sound for a logic S = (L, W , I) if and

only if for all sets of formulae Γ ⊆ L and for all formulae α ∈ L, if Γ fC α then Γ |=S α.

Definition. A logical calculus C = (A, R) is complete for a logic S = (L, W , I) if and

only if for all sets of formulae Γ ⊆ L and for all formulae α ∈ L, if Γ |=S α then Γ fC α.

Example 19. A calculus using just the resolution inference rule described in Section 3.2.2

is sound for first-order predicate, yet not complete. In order to be complete, such a

calculus would also need the addition of the factorization inference rule, defined as:

α1 ∨ ... ∨ αi ∨ ... ∨ αj ∨ ... ∨ αn

θ(α1 ∨ ... ∨ αi ∨ ... ∨ αj−1 ∨ αj+1 ∨ ... ∨ αn)

where θ = mgu(αi, αj).

Simply put, if a formula contains a disjunction of literals which can be unified, then

remove one of them and apply the unifier to the formula.

3.4 Search Control

Automated theorem provers operate by performing search on formulae in a particular

logic, in accordance with the inference rules and axioms specified by a calculus for that

logic. Essentially, a theorem prover is searching for a sequence of inference rules which

syntactically connect the input formulae to the axioms, the direction of which is de

termined by the specific calculus being used. Each step of the search is defined by a

particular knowledge representation, and the search proceeds by transitioning between

48

knowledge representations until the goal can be identified in the current representation.

A transition between knowledge representations is defined as the selection of an inference

rule to perform, and also the component(s) of the current knowledge representation to

perform this inference rule on. This choice is not a trivial one, as at any given knowledge

representation, there may be many formulae to which inference rules can be applied, and

further, there may be many different inference rules to choose from. The mechanism

which makes this decision is known as the search control, which, in conjunction with a

logic and a calculus, forms the final component of an automated theorem prover.

Given that at each step of the search there are likely many possible formulae and

applicable inference rules to choose from, the goal of the search control is to choose the

transition which will result in a knowledge representation that is closest to one containing

the goal of the search. The distance between any particular knowledge representation

and one containing the goal of search can be measured as the number of transitions

necessary to reach the goal representation from that particular knowledge representation.

Optimally, the search control should choose transitions that result in the shortest path

between the initial representation and the goal, in order to generate the shortest proof

of the theorem, but also to minimize the amount of computational resources needed to

perform the proof. Design of a search control for an automated theorem prover must then

balance these two factors of optimization. If a particular search control performs lengthy

and complex computations in order to determine the optimal transition to perform at

each step of the search, it may indeed result in the shortest possible proof, yet it will

likely be sub-optimal with regards to computational resource consumption.

This balance is generally struck by implementing search controls for automated theo

rem provers as heuristic approximation methods based on the syntactic features of formu

lae. Given that, for a particular calculus, the number of inference rules is fixed, whereas

the number of formulae to which it is applicable to a given knowledge representation is

49

quite variable, it is often the formulae selection component of search control which is the

most difficult. In order to keep the complexity of the search control minimal, formulae

are selected by measuring them according to a utility function which evaluates formulae

according to syntactic features, such as length, occurances of particular symbols, depth of

terms, etc.. By evaluating utility as a property of syntactic features, the computational

complexity of performing this evaluation can be kept in roughly linear time with respect

to the number of symbols occuring in a formula.

Example 20. The weighted sum [Fuc96] utility function which counts the occurances of

various classes of symbols and assigns weights to each in their summation.

Let λ be a term or wff, V be the set of variable symbols and F the set of function

symbols; the weighted sum w(λ) is defined as:

⎧

1, if λ ∈ V ∪ C

2 +

 n

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
i=1 w(ti), if λ ≡ f(t1, ..., tn) where f ∈ F ∪ FV

w(λ) =
 1 + i
n
=1 w(ti), if λ ≡ R(t1, ..., tn) where R ∈ P ∪ PV ∪ PI
n w(αi), if λ ≡ *(α1, ..., αn) where * ∈ Ji=1

w(α), if λ ≡ Dx1, ..., xn • α where D ∈ Q

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

By selecting terms according to a minimization criteria using w, this utility function

biases towards selecting terms with more variables rather than function symbols, and

formulae that are connected by junctors rather than predicates, given the difference in

weights assigned to each case.

The principle behind such heuristic utility functions is to imbue the search control

with human knowledge of selection preferences while still maintaining a low computa

tional complexity. For the utility function w presented in Example 20 above, the human

50

knowledge being imparted is that smaller facts with fewer functions than variables are

more general, and therefore more useful during deduction. The intent is that selecting

facts with minimal utility values according to w will result in transitions that bring the

knowledge representation closer to one containing the goal. However, heuristics such

as these cannot be proven as always selecting the best transition to perform, and the

applicability of a particular utility metric can only be established through experimental

result. While it may be that, in general, selecting smaller formulae in accordance with w

results in shorter proofs than selecting larger terms, there may also exists problems for

which this selection criteria is quite inefficient, and in these cases selecting larger terms

results in shorter proofs.

Given that different search controls may evaluate the utility of possible transitions

from any particular knowledge representation differently, differences in search controls

will lead to different paths being taken through the search space. Assuming the under

lying calculus is sound, if a particular search control reaches a representation containing

the goal, we can be assured that the theorem is in fact a semantic consequence. How

ever, even given a sound and complete calculus, it may be that certain search controls

are unable to find syntactic derivations of theorems which are semantically provable, or

even provable using another search control. This can occur if the search control violates

the principle of fairness. Simply put, fairness dictates that every valid transition from

a particular search state must at least have the possibility of being chosen. If certain

transitions are outright denied the possibility of being chosen, it may be that, while the

utility value generated by the heuristic metric being used makes this trasition appear to

be a bad choice, it is actually a necessary transition on the path to the goal state.

Finally, regardless of the search control being used, unless the theorem being proved

is a member of the axioms to begin with, there exists a minimal sequence of transitions

necessary to prove the theorem. This minimal path between the initial representation

51

and the goal is the optimal solution against which search controls may be compared to

determine efficiency, and regardless of the search control being used, none of them can

generate a proof of the theorem in fewer transitions. Necessarily, this minimal proof is

bound to the particular calculus being used, and for a different calculus there may be a

proof with a smaller number of transitions, but nonetheless for any calculus there exists

a minimal proof for a given theorem.

52

Chapter 4

Malicious Argumentation

This chapter addresses the principal contribution of this thesis. In Section 4.1 the gen

eral pitfalls of resource bounded argumentation are discussed, focusing in particular on

the potential exploitation of these bounds by malicious agents in an open multi-agent

system. Section 4.2 then analyzes the decision procedures involved in argument valid

ity, acceptability evaluation and the dialogue game for possible exploitation based on

resource bounds exhaustion. In order to maintain the scope of this thesis, a malicious

agent strategy is described only for one of these decision procedures: the attack relation

decision procedure computed during argument evaluation. Towards this end, Section 4.3

discusses methods by which a malicious agent may alter the content of an argument in or

der to exhaust the resources allocated to its opponent’s attack relation decision procedure

in order to manipulate the outcome of this decision procedure. Finally, in Section 4.4,

an example of this malicious agent strategy is given for a hypothetical open multi-agent

system that uses argumentation to manage contracted designs.

4.1 Consequences of Resource Bounded Argumentation

Agents often need to interact in order to achieve their goals. It may be that they require

resources controlled by another agent, that they require the cooperation of another agent

to complete a task, or that they require or wish to affect another agent’s internal state.

Argumentation provides a means for this interaction to occur, often offering advantages

over simple symbolic communication and more traditional approaches to these problems.

Rather than simply transmitting solutions, argumentative agents include supporting rea

53

sons behind these solutions, which allows these agents to engage in a complex reasoning

process in order to find consensus despite conflicts in and between their knowledge bases.

The advantages gained through the use of argumentation, however, are not without

consequence. As discussed in Section 2.5, practical implementations of argumentation

must impose resource bounds at several levels of the process, due to the intractability

of procedures used by the argumentation process. These resource bounds result in non

monotonicity in computation, such that a different result could have emerged from the

process if it were to have run longer. This consequence has been recognized for over a

decade by the field of automated argumentation [Lou98], although few researchers have

paid much attention to the implications of computational nonmonotonicity in argumen

tation.

Due to the resource bounds imposed on various procedures involved in the argumen

tation process, it may be that an argument which has been evaluated by an agent as

acceptable would be found unacceptable by that agent if greater resources were afforded

to the process. If that agent were to be engaged in, for instance, a deliberation dialogue,

this may have the consequence of the agent agreeing to perform actions it would otherwise

have not agreed to perform, if given greater resources to perform argument evaluation

with. While this is an unavoidable consequence of resource bounded argumentation,

when implemented in a closed multi-agent system, fairness criteria can be used to ensure

that agents have relatively equitable resource bounds [Lou98]. Such an approach does

not avoid the consequences of resource bounded argumentation, but rather attempts to

minimize it by “levelling the playing field”, so that each agent has a roughly equal chance

of making incorrect decisions due to resource bounds exhaustion.

However, fairness in resource consumption can only be achieved if the agents involved

are willing to play fair. In a closed multi-agent system, achieving such fairness is a rela

tively trivial matter, as the agents involved are designed and controlled by a single entity,

54

and so resource consumption can be controlled locally. In an open multi-agent system,

where agents may be designed and controlled by many different entities and executed

on distributed and uncontrolled resources, achieving fairness in resource consumption is

likely impossible. In such systems, resource consumption can only be controlled by pro

tocol rather than design, and protocol can only control those aspects of an agent that are

externally verifiable, such as time. While imposing temporal limits on agent interactions

can ensure that these interactions occur in a timely fashion, this cannot ensure equitable

resource consumption, as agents may have great disparity in the computational resources

available to them.

In open multi-agent argumentation systems, then, some agents may have an advantage

over others through access to greater computational resources. By affording greater

resources to, for instance, their argument evaluation procedures, these agents may be

able to make better decisions than agents with fewer resources. While this is not a

particularly desirable consequence, it does not undermine the fundamental autonomy of

the agents involved in the system, and so may be considered an acceptable limitation of

open multi-agent argumentation systems.

When dealing with open multi-agent systems, however, the possibility of malicious

self-interested agents must be accounted for. While agents may need to cooperate,

whereby cooperating agents work together in pursuit of a mutually beneficial goal that

may not be achievable seperately, it is generally the case in open multi-agent systems

that agents are primarily interested in achieving their individual goals. In pursuit of

their goals, agents may attempt to strategically “bend the rules” to gain an advantage

over other agents in the system. In contrast to closed multi-agent systems, open multi-

agent systems in particular must consider the possibility of such malicious behaviour, as

the agents within the system are generally implemented by different entities, and so a

high-level altruistic notion of “fair play” cannot be instilled in the agents by design.

55

In open multi-agent argumentation systems in which agents are resource bounded,

then, resource disparity may be strategically exploited by malicious agents towards their

own ends. By utilizing superior resources and sufficient knowledge of its opponent, a ma

licious agent may simulate its opponent’s decision procedures and construct an argument

specifically designed to exhaust its opponent’s resource bounds. In this way, an argument

which would be evaluated as unacceptable by the agent’s opponent, due to the opponent

discovering a conflict between its knowledge base and the argument and therefore an

attack against the argument, may be rendered acceptable by introducing superfluous

complexity into the argument such that the opponent cannot deduce the conflict within

its resource limitations. By manipulating the outcome of argument evaluation, a mali

cious agent may in turn affect the outcome of the dialogue game itself. If the agents are

involved in deliberation regarding a course of action, this could result in the malicious

agent controlling its opponent’s actions; if involved in negotiation of resource distribu

tion, the malicious agent could affect an unequal distribution of resources; if involved in

persuasion, the malicious agent could cause its opponent to adopt particular knowledge

it would otherwise not accept. Rather than resource exhaustion occuring happenstan

tially, as can occur in a closed multi-agent argumentation system, malicious agents in an

open multi-agent argumentation system may exploit resource disparity to force resource

exhaustion for their own ends. This clearly undermines the security of these systems,

as such techniques would allow malicious agents to gain an undue amount of influence

over other agents in the system, compromising the overall system goal in favour of the

malicious agent’s individual goals.

56

4.2 Decision Procedures Susceptible to Malicious Argumentation

Malicious argumentation is made possible by agents needing to perform intractable, re

source bounded decision procedures on complex data constructed (at least partially) by

other agents. Given knowledge of the procedure and resource bounds, the other agent

can structure the data in such a way that resource exhaustion is gauranteed. For a given

resource bounded decision procedure returning a boolean value, the case of resource ex

haustion represents a third possibility; neither the conditions for a positive or negative

result have been reached, yet nonetheless the resources allocated to the procedure have

been exhausted, and a result must be returned. It is therefore necessary for the proce

dure to map the case of resource exhaustion onto either a positive or negative result. A

malicious agent may then exploit such a procedure by employing a resource exhaustion

strategy if it desires the result that occurs in the case of resource exhaustion rather than

the result that would occur if the procedure is able to terminate “naturally”.

The use of complex formal logics for representing knowledge in argumentation sys

tems, and in particular, for representing exchanged knowledge, opens the door for mali

cious argumentation strategies based on resource bounds exhaustion. Decisions requiring

intractible procedures such as deduction to be performed on complex knowledge received

from an external source must be resource bounded, and are therefore susceptible to ma

licious exploitation based on resource bounds exhaustion. However, such malicious argu

mentation techniques are not limited to just those decision procedures that operate on

complex logical formulae; any resource bounded intractable decision procedure involving

external data may be susceptible to malicious argumentation. We herein examine proce

dures that may potentially be exploited by malicious agents, although this examination is

by no means exhaustive. Further, we shall focus on the use of a resolution based theorem

prover in the decision procedures which require deduction to be performed. However,

57

these techniques are not limited to just those argumentation systems using resolution

based provers; any theorem prover is susceptible to resource exhaustion techniques, al

though the specific instantiation of these techniques will likely need to be tailored to

exploit the particular inference rules and search control used by that prover.

4.2.1 Argument Validity

Upon receiving an argument from another agent, before performing argument evaluation,

the argument should be tested for validity. In a closed multi-agent argumentation system,

this may not be necessary, as agents are designed by a single entity and therefore can be

designed to only transmit valid arguments. In open multi-agent argumentation systems,

however, the possibility that agents may employ invalid arguments requisites an initial

test of argument validity. The conditions of argument validity, as described in Section 2.3,

are defined for an argument (Φ, α) as follows:

1. The support set Φ is consistent: Φ f ⊥

2. The conclusion α is a logical consequence of Φ: Φ f α

3. Φ is a minimal set satisfying (1) and (2): there is no Φ ' ⊂ Φ such that Φ ' f ⊥ and

Φ ' f α

It should be immediatly apparent that the argument validity decision procedure is

intractable; each of the three conditions comprising the procedure involve deduction,

which is a known intractable procedure for all logics of interest. Given that determining

argument validity is a component procedure of an agent’s locution decision procedure,

as it must be performed on an incoming argument in order for the agent to decide which

locution to respond with in the dialogue, the argument validity decision procedure must

also be resource bounded. It is therefore possible that a malicious agent may target

58

this procedure for strategic resource exhaustion, with the aim of passing off an invalid

argument as valid.

As each of these conditions involves deciding deduction between sets of formulae, it

is necessary to employ an automated theorem prover in their decision procedures. As

it is necessary to impose resource limits on these decision procedures, the outcome of

performing deduction will be one of three different possibilities: true, false, or resource

exhaustion. However, the decision procedures themselves need to evaluate to a purely

boolean value; it is therefore necessary for the procedure to handle the case of resource

exhaustion in its deduction component by mapping it onto a boolean value.

4.2.1.1 Consistency of Support

Consider a decision procedure for the first condition, using a resolution-based theorem

prover as described in Section 3.2.2 in a straightforward manner to test a set of formulae

for consistency. That is to say, rather than operating the prover in a refutation-based

manner to decide a consequence relation, the prover can be used to test for consistency

by simply giving it a set of formulae from which it attempts to derive a contradiction.

The simplest result is the case in which the set of formulae is inconsistent, and the prover

is able to derive a contradiction within the resource limits, in which case the decision

procedure can return the answer false. If resources are exhausted before a contradiction

can be derived, it may be tempting to design the decision procedure to also answer false,

in order to account for cases where the set of formulae is inconsistent yet the contradic

tion is outside the resource bounds. However, in the case where the set of formulae is

consistent, it is necessary for the prover to exhaust all possible applications of inference

rules. If all possible inference rule applications are exhausted before the prover’s resource

bounds, the decision procedure can obviously answer true, yet in practical applications,

the resource limits of the prover will likely be exhausted well before all possible inference

59

rule applications are exhausted. In order to avoid false positive identifications of incon

sistent sets of formulae, for practical purposes the case of resource exhaustion should

also be mapped to true. However, while this enables the argumentation system to handle

larger valid arguments, it also opens the possibility of malicious agents presenting large

invalid arguments that, due to resource exhaustion, are evaluated as being valid.

4.2.1.2 Logical Entailment of Conclusion

The second condition of argument validity, that the argument’s conclusion must be a

logical consequence of the support, is slightly different than the first, with respect to the

case of resource exhaustion. Again, consider a decision procedure for this condition which

decides the consequence relation between the support and conclusion using a resolution

based theorem prover. As described in Section 3.2.2, the conclusion is negated, added

to the support, and the resolution inference rule is applied until either a contradiction is

derived or no further applications of the inference rule are possible. In the case where a

contradiction is derived, the conclusion is a consequence of the support, and otherwise it is

not. Unlike the first condition, in which applicable inference rule exhaustion is needed to

establish validity, in the second condition inference rule exhaustion is needed to determine

that the argument is invalid. In general, it is likely that an invalid argument will exhaust

the resource limitations imposed on the decision procedure before all applicable inference

rules are exhausted. However, mapping the case of resource exhaustion onto the result of

false for the decision procedure will cause false negative results for large valid arguments,

as it may be the case that a contradiction is present in the knowledge representation

yet resources are exhausted before it can be derived. In order for the decision procedure

to correctly handle valid arguments, the case of resource exhaustion should be mapped

to true, yet this also allows the possibility of malicious agents constructing large invalid

arguments which cause resource exhaustion before inference rule exhaustion, and are

60

thereby deemed valid by the decision procedure.

4.2.1.3 Minimality of Support

The third condition of argument validity states that the support set should be minimal

with respect to set inclusion while still fulfilling the previous two conditions. For practical

purposes, this decision procedure is quite computationally expensive. In order to test this

condition, it is necessary to iterate over elements of the powerset of the support set, and

further, to test both of the above conditions on each of these elements. In the worst-case

scenario, where there does not exist a subset of the support set for which conditions 1

and 2 hold, it is necessary to iterate over all elements of the powerset of the support set,

and so for a support set of size n the upper complexity bounds of this decision procedure

is 2n times greater than the complexity of verifying the previous two conditions on the

support set alone. Further, this worst-case scenario occurs in the case that the argument

is valid with respect to this condition. The best-case complexity scenario occurs when

this condition is violated, such that the first subset that is tested meets conditions 1

and 2, and so the complexity of this decision procedure is minimally bounded by the

comlexity of the decision procedures for conditions 1 and 2. With knowledge of the order

in which these subsets are tested, it may be possible for a malicious agent to strategically

manipulate the outcome of this resource bounded decision procedure in order to get

another agent to evaluate an argument with a non-minimal support set as valid.

Each of the component decision procedures of the argument validity decision proce

dure, when implemented in a practical argumentation system wherein resource limitations

must be imposed on intractable procedures, may be susceptible to malicious argumen

tation based on exhausting resources in order to manipulate the outcome of decision

procedures. While these decision procedures can be designed to map cases of resource

exhaustion as identifying invalid arguments, this approach has the consequence of iden

61

tifying large valid arguments as invalid. In trivial scenarios, it may be possible to keep

all valid arguments within a reasonable size so as to avoid such cases. However, in prac

tical applications employing large knowledge bases and involving complex reasoning, it

is not unreasonable to assume that large arguments for which the resources allocated to

the argument validity decision procedure are insufficient might naturally occur in such

systems. Therefore, restricting an argumentation system to only allow those arguments

which can be validated within the allocated resources cannot be seen as an acceptable

solution to the problems presented by malicious argumentation.

On an aside, the minimality condition itself is rather questionable. Consider the sets

of propositional logic formulae Φ = { A ∧ B } and Ψ = { A, B }. Both Φ f A and

Ψ f A, however Φ satisfies the minimality condition whereas Ψ does not, as there exists

a subset { A } ⊂ Ψ such that { A } f A. Given that Φ and Ψ are logically equivalent,

it is clear then that the outcome of this condition can be manipulated by altering the

syntactic form of an argument’s support set while retaining its semantic content. By

framing minimality of the support set as property based on set operations, this condition

is unable to capture the notion of truly minimal support; that is, the least amount of

information necessary to support the argument’s conclusion.

4.2.2 Argument Evaluation

As discussed in Section 2.2.1, evaluating the justification status of an argument involves

computing properties of the argument in relation to the argumentation framework, the

specific properties being defined by the particular argumentation semantics being used. In

order to perform this evaluation, the attack relations between arguments which comprise

the argumentation framework must then be computed. In order to correctly evaluate

the justification status of an argument, it is therefore necessary for an agent to generate

all possible arguments from its knowledge base, and further to determine if there exist

62

attack relations between these arguments.

While generating the set of all possible arguments from an agents knowledge base,

as well as computing attack relations between these arguments, is quite an expensive

and generally intractable procedure, it is possible for an agent to perform this compu

tation prior to entering an argumentative dialogue. Even if an agent were to perform

this computation dynamically during the dialogue, in which case the procedure would

need to be resource bounded, nonetheless the process of generating arguments from an

agent’s knowledge base and computing attack relations between them is not susceptible

to manipulation by a malicious agent, given that these computations are based entirely

on the agent’s internal data. However, evaluating the justification status of an argument

presented by another agent is susceptible to malicious manipulation, as the argument

being evaluated originates from a source external to the agent.

In order for an agent to evaluate an argument originating externally, the agent must

determine the attack relations between that argument and the arguments in the set of all

arguments AR constructable from the agent’s knowledge base, regardless of the particular

argumentation semantics being used. Determining these attack relations requires the

agent to compute conflict between component formulae of the argument being evaluated

and the arguments in AR. As discussed in Section 2.3.1, deciding conflict generally

involves performing deduction in the underlying logical language, which is generally an

intractable and therefore resource bounded procedure when implemented in a practical

argumentation system. Consider then a situation wherein an agent is presented with an

argument α, which the agent must evaluate in order to determine whether to accept the

argument or not. Assume the agent is using an arbitrary argumentation semantics to

perform this evaluation with, for which there exists an argument β ∈ AR which attacks

the argument α such that the outcome of the evaluation hinges on deciding the attack

relation from β onto α; that is to say, the argument α is unacceptable under the particular

63

semantics just in case the agent is able to determine that β attacks α. The agent must

then determine that there is a conflict between component formulae of α and β within the

resource bounds imposed on the attack relation decision procedure in order to determine

that the argument α is unacceptable. Given that we are assuming β attacks α, such a

conflict does exist, yet nonetheless it is necessary for the agent to employ an automated

reasoning component to derive the conflict between the component formulae of α and β.

In the case where the resources allocated to the attack relation decision procedure are

exhausted before this conflict can be derived, the agent must map this outcome onto a

result of either true or false for the decision procedure.

As with the argument validity decision procedure discussed above in Section 4.2.1,

mapping the case of resource exhaustion to a result of either true or false for the attack

relation decision procedure will have different consequences for the system. Consider

an argumentation system which uses a resolution based theorem prover as described in

Section 3.2.2 to determine conflict, where conflict is defined as a contradiction between

the component formulae of the arguments involved. The first option to consider is the

case of mapping resource exhaustion onto a result of true for the attack relation decision

procedure; that is, if resources are exhausted when testing for an attack relation between

two arguments, the procedure will report that an attack relation does exist between the

arguments. As with the first validity condition discussed in Section 4.2.1, the resolution

based prover is used to directly determine whether a contradiction is present, rather than

being used in the standard refutation-based method of deciding a consequence relation.

In the case when the arguments being tested do not attack one another, the prover

must then exhaust all possible inference rule applications in order to determine that a

contradiction is not present. For large enough arguments, it is likely that the resources

allocated to the decision procedure will be exhausted before all possible inference rule

applications are exhausted; mapping the case of resource exhaustion onto the result of

64

true for the attack relation decision procedure will then likely result in many false-positive

identifications of attack relations between arguments. Not only will this have the effect

of the agent evaluating many acceptable arguments as unacceptable, it has the further

consequence of the agent responding with counter-attacks that do not in fact attack the

argument they purport to.

The attack relation decision procedure should therefore be implemented to map the

case of resource exhaustion onto a result of false; that is, upon the resource limit being

reached, the procedure should terminate with the result that there does not exist an

attack relation between the arguments being tested. As with the decision procedures

examined in Section 4.2.1, however, this opens the decision procedure up to the possi

bility of exploitation, whereby a malicious agent may construct an argument designed to

exhaust the resource bounds of the evaluating agent’s attack relation decision procedure

before an attack relation onto the argument can be found. In this way, a malicious agent

may manipulate the outcome of its opponent’s argument evaluation procedure in order to

render an unacceptable argument as acceptable, given the resource limitations imposed

on the opponent’s argument evaluation procedure.

4.2.3 The Dialogue Game

The final decision procedures susceptible to malicious argumentation that shall be ex

amined herein relate to the decisions made at the level of the dialogue game. Of the five

classes of dialogue game rules described in Section 2.4.1, two are particularly vulnerable

to malicious argumentation: the class of commitment rules, and the termination rules.

While it may be found that the classes of commencement, locution and combination rules

are not only vulnerable but also advantageous to exploit through malicious argumenta

tion, we shall herein consider only the exploitation of the commitment and termination

rules.

65

4.2.3.1 Commitment Rules

The commitment rules of a dialogue game describe the conditions under which an agent

may commit to a particular proposition. The propositions an agent has committed to

are added to a public commitment store for that agent, which represents a subset of the

agent’s knowledge base that the agent has made publicly available through the argu

ments it has presented during the dialogue. While the agent’s knowledge base may be

inconsistent, it is necessary that the agent’s commitment store is consistent, in order to

maintain consistency throughout the agent’s line of argumentation during the dialogue.

Commitment rules then describe the means of updating the commitment store and main

taining consistency as agents present arguments, as well as allowing for deletions from

the commitment store when an agent chooses to backtrack and retract previously as

serted arguments. While the commitment store is “public”, in a distributed multi-agent

argumentation system, it is often necessary for each agent to maintain the set of commit

ments asserted by its opponent(s) in the argumentative dialogue. This requires agents to

verify the consistency of new knowledge added to a commitment store when an opponent

presents an argument, which in turn requires the agent to employ an automated theorem

prover to test whether the contents of the commitment store entail a contradiction or

not.

As with the argument validity and acceptability evaluation decision procedures, we

shall consider an agent making use of a resource bounded resolution based theorem prover

to determine the consistency of a commitment store. Again, it is necessary to examine the

consequences of mapping the case of resource exhaustion onto either a positive or negative

result for the commitment store consistency decision procedure. Given that verifying the

consistency of a commitment store involves attempting to derive a contradiction from a

set of formulae, the resolution based prover may be used in a straightforward manner to

test for a contradiction, rather than in a refutation-based manner to establish a conse

66

quence relation. In the case that the commitment store being tested is in fact consistent,

it is necessary for the prover to exhaust all possible inference rule applications; given a

sizeable collection of commitments, it is likely that the resources allocated to this decision

procedure will be exhausted before all possible inference rule applications. If the case of

resource exhaustion is mapped onto a negative result for the consistency test, it is likely

then that many consistent commitment stores will be reported as inconsistent due to

resource exhaustion. To avoid incorrectly identifying inconsistency in a consistent com

mitment store, the case of resource exhaustion should therefore be mapped onto a positive

result for the commitment store consistency decision procedure. As with the argument

validity and acceptability evaluation decision procedures, however, this allows for the

possibility of malicious manipulation of this decision procedure’s outcome; a malicious

agent may construct an argument designed to exhaust its opponent’s commitment store

consistency decision procedure before the opponent can determine that the argument

contradicts previous arguments put forward by the malicious agent. A malicious agent

may then successfully employ inconsistent lines of argumentation during the dialogue,

through which it may manipulate the outcome of the dialogue game as a whole.

4.2.3.2 Termination Rules

The final decision procedure we shall consider as potentially susceptible to manipula

tion by a malicious agent relates to the termination rules of a dialogue game. Rather

than considering how a malicious agent may manipulate the outcome of the termination

condition decision procedures directly through strategic manipulation of the content of

arguments, as the decision procedures described above have been analyzed, we shall in

stead consider how an agent may affect the outcome of the dialogue game as a whole by

stratigically manipulating the “flow” of arguments during the dialogue. Argumentative

dialogue games between agents are instantiated in order to affect a joint decision between

67

agents; as outlined in Table 2.1, an argumentative dialogue may be used to persuade an

agent of a particular proposition, to negotiate the division of resources, to decide on a

course of action, and so forth. The termination rules of a dialogue game define not only

the point at which the dialogue ends, but also the outcome of the dialogue; the “winner”

and “loser” of the interaction, if such terms are applicable, or the course of action to

be taken, the effects on an agents knowledge, the division of resources, or whatever the

purpose of the dialogue may be. Given that such a dialogue game is instantiated to

perform a decision, the dialogue itself must be resource bounded, so that actions based

on the outcome of the dialogue game may occur in a timely fashion. These resource

bounds are generally implemented as a termination rule for the dialogue game, and as

with the decision procedures performed by agents during their turns, the case of resource

exhaustion must be mapped onto a particular result for the dialogue game.

Unlike the decision procedures analyed so far, the outcome of the dialogue game in the

case of resource exhaustion is not as clear, but rather must be based on the particulars of

the system and dialogue game type being used. However, given that agents involved in

the dialogue game must be aware of the termination rules of the game, and how the case of

resource exhaustion is handled, strategic manipulation of the dialogue game is nonetheless

possible. Whereas the decision procedures used in argument validity and acceptability

evaluation could be exploited through resource exhaustion by adding formulae to the

content of arguments, the decision procedure based on the dialogue may be exploited

by adding arguments to the content of the dialogue. For instance, if a malicious agent

finds itself in a winning position which could be overturned by its opponent introducing a

particular argument, the malicious agent may employ delay tactics to draw its opponent’s

attention away from that particular line of argumentation until the resources allocated to

the dialogue are exhausted. If a malicious agent finds itself unable to win a dialogue game,

it may construct superfluous arguments designed to delay its opponent from finding a

68

winning argument, and thus draw a stalemate from the interaction rather than a loss.

While these techniques are likely more difficult to implement than the resource exhaustion

strategies described above which target the automated theorem proving component of

an argumentative agent, it is nonetheless possible for a malicious agent to exploit the

rules of a dialogue game in order to manipulate its outcome by introducing superfluous

arguments designed to exhaust the resources allocated by the termination conditions of

the dialogue game.

4.3 Strategically Manipulating Arguments

An agent employs a malicious argumentation strategy when it desires to manipulate the

outcome of one of its opponent’s decision procedures for a given argument or line of argu

mentation. A malicious resource exhaustion strategy can be performed by an agent when

the decision procedure being targeted returns the desired result in the case of resource

exhaustion. To accomplish this, the agent modifies the content of the argument or line

of argumentation by adding superfluous information designed to exhaust the decision

procedure’s resource bounds, while still retaining the original content of the argument.

This is a notably distinct case from lying, as when an agent lies, it misrepresents infor

mation, such as reporting that it believes propositions it does not, or plans to perform

actions it cannot or has no intention to. In a malicious resource exhaustion strategy, the

agent does not violate the felicity conditions of the locution being performed; rather, the

agent manipulates how its opponent interprets the information by modifying the content

so that a different result is achieved than what would have occured if the opponent had

sufficient time to completely analyze the information.

We shall herein focus on techniques for exploiting a particular decision procedure: the

attack relation decision procedure used by the argument evaluation decision procedure.

69

By manipulating the outcome of the attack relation decision procedure, a malicious agent

may render a particular argument acceptable to its opponent which would be found un

acceptable if the opponent had sufficient resources to thoroughly examine the argument.

Given that exploiting the attack relation decision procedure involves exhausting the re

source bounds of an automated theorem prover as it searches for a contradiction in a set

of formulae, the techniques described here could also be used to exploit other decision

procedures which make use of an automated theorem prover for similar purposes, such as

the argument validity decision procedures discussed in Section 4.2.1 or the commitment

store rules of the dialogue game discussed in Section 4.2.3. Nonetheless, in order to main

tain the scope of this thesis, the discussion of strategically manipulating arguments for

resource bounds exhaustion based exploitation shall be limited to just the attack relation

decision procedure. Towards this end, two techniques will be described in the following

subsections: implication chaining, by which arbitrarily large consequence relations can

be constructed, and tautology injection, which makes use of arbitrarily large tautologies

to exhaust a theorem provers resources. These techniques will then be put to use in an

example of a malicious argumentation scenario in Section 4.4.

4.3.1 A Resource Bounded Undercut Relation

For the purpose of the argument manipulation strategies described in Section 4.3.2 and

Section 4.3.3, as well as the malicious argumentation example scenario discussed in Sec

tion 4.4, we shall focus on resource bounded exploitation of a particular attack relation.

The attack relation that will be used in these sections is the undercut attack relation,

based on those described in Section 2.3.1. Further, the attack relation needs to be de

scribed as a resource limited decision procedure. Rather than strictly limiting time or

computational cycles, for simplicity’s sake we shall instead limit the number of inference

steps performed by the automated reasoning component used to decide syntactic conse

70

quence in the argumentation system’s attack relation decision procedure, similar to the

method used in [Lou98]. Towards this end, the symbol fk will be used to denote deduc

tion limited to k inference steps; that is, if the theorem prover being used can determine

that φ f ψ in k or less inference steps using a given search control, then φ fk ψ, otherwise

φ fk ψ.

The resource limited undercut attack relation used herein can then be described

formally as:

Definition. An argument (Φ, α) is an undercutk of an argument (Ψ, β) iff Ψ∪{ α } fk ⊥.

4.3.2 Implication Chaining

The goal of the argument manipulation techniques described herein is to modify the

contents of a given argument such that the interpretation of the symbols present in the

original argument remains the same yet the resources required to decide a certain property

of the argument may be arbitrarily increased. It is necessary that these techniques

are scalable, as a particular malicious argument needs to be tailored to the specific

resource bounds of the opponent’s decision procedure. The first of such techniques we

shall examine makes use of chains of material consequence relations to arbitrarily increase

the resources needed to detect a contradiction when using a resolution based automated

theorem prover.

The material consequence relation P → Q, where P and Q are well-formed formulae

in a logical language, is interpreted for a boolean logic as “if P then Q”; that is, if P is

true, then Q must also be true, yet if P is false, Q may be either true or false. The “P ”

side of the relation is referred to as the antecedent, and the “Q” side as the consequent

of the material consequence relation. Any given well-formed formula of the language can

be modified without changing the interpretation of the symbols involved in the original

formula by constructing a new formula in which the original formula is the consequent

71

of a material implication with a true antecedent.

Example 21. Consider the initial formula Q in boolean propositional logic; that is, an

assertion that Q is true.

A new formula can then be constructed by re-writing Q to be the consequent of a

material consequence relation with a true antecedent; e.g: P ∧ (P → Q).

The interpretation of this new formula is different from the original, specifically be

cause the new symbol P has been added, which must also be interpreted. However, the

symbol Q nonetheless has the same interpretation in the new formula P ∧ (P → Q) as it

did in the original formula Q.

The purpose of such a manipulation, as stated above, is to increase the resources

needed to determine particular properties of the formulae when using an automated

theorem prover. The property we are interested in here is a contradiction, by way of using

a resolution based automated theorem prover. The technique of re-writing a formula to

be the consequent of a true antecedent can be used to increase resource consumption by

a resolution based prover, as can be seen in the following example.

Example 22. Consider a set of formulae { Q, ¬Q }, which is quite obviously contra

dictory. Through the application of a single resolution inference rule, this contradiction

can be found:
Q, ¬Q

D
Now consider a modification of the formula Q in this set, as described above, to be

P ∧ (P → Q). Given that we’re dealing with a resolution based prover, this new formula

needs to be converted into clauses as follows: { P, ¬P ∨ Q }.

The new set of formulae to be tested for contradiction is then: { P, ¬P ∨ Q, ¬Q }

In order to establish a contradiction now, two inference rules need to be applied to

the set of formulae:

72

P, ¬P ∨ Q
1. Resolution: , Result: { P, ¬P ∨ Q, ¬Q, Q }

Q
Q, ¬Q

2. Resolution: , Result: { P, ¬P ∨ Q, ¬Q, Q, D }
D

This technique can be arbitrarily scaled to require a specific number of resolution

inference rules to be applied before the contradiction can be found. For instance, to force

the theorem prover to use n resolution inference rules to establish a contradiction, the

set of formulae can be re-written as:

{ P1, P1 → P2, ..., Pn−1 → Q, ¬Q }

In order to use this technique to exploit the resource bounds of the attack relation

decision procedure, a malicious agent needs to know the resource bound imposed on this

procedure by its opponent, as well as the component of its argument which contradicts

an element of the opponent’s knowledge, which will form the basis for the attack relation.

Example 23. Consider an argument (Φ, α) = ({ P, P → Q }, Q) of agent a1, which is

undercut only by the argument (Ψ, β) = ({ ¬P }, ¬P) of agent a2.

Agent a1 will play the role of the malicious agent in this scenario, and a2 will be

the opponent. If presented with the argument (Φ, α), agent a2 would respond with the

attacking argument (Ψ, β). We shall assume that a2’s attack relation decision procedure

(in this case, the undercut relation decision procedure described in Section 4.3.1 above) is

limited to k inference steps, where k is sufficient to decide that (Ψ, β) undercutk (Φ, α).

If the malicious agent a1 desires that a2 does not attack the argument (Φ, α), it can

employ an implication chaining technique to exhaust a2’s resources before a2 can discover

the contradiction in Φ ∪ β. Agent a1 can then re-write (Φ, α) as follows:

(Φ ' , α) = ({ P1, P1 → P2, ..., Pk → P, P → Q }, Q)

It will then take a2 a total of k + 1 inference steps to determine the contradiction

in Φ ' ∪ β. Given that a2 has only k inference steps allocated to the undercut relation

73

decision procedure, it will have exhausted its resources before it can determine that

(Ψ, β) undercutk (Φ ' , α). Assuming that a2 is mapping the case of resource exhaustion

as discussed in Section 4.2.2, agent a2 will then accept the argument (Φ ' , α), as it cannot

find an attack against the argument.

Note that it isn’t necessary for a malicious agent to know the exact value of k used

by its opponent. It would be enough for the agent to approximate a value for k that

it can reasonably assume is far past the actual value of k. If the agent’s opponent is

using commercially available software, this may be as simple as using default or maximal

values for that software. Further, it may be possible for a malicious agent to perform

this approximation through a learning process. A number of trivial arguments could be

used to test different values for k until a reasonable approximation can be formed, which

can then be used in a malicious argumentation strategy to manipulate the opponent’s

decision procedure(s) for an important argument.

4.3.3 Tautology Injection

The next argument manipulation strategy we shall examine makes use of tautologies to

exhaust the resources of an opponent’s attack relation decision procedure. A tautology

is a formula in a boolean logic which is interpreted as true under all interpretations.

Simple tautologies are formulae such as P ∨ ¬P , which states that P is either true or

false; under a boolean logic, it is impossible for a wff to be neither true nor false, and

so this formula evaluates to true under all possible assignments of truth-values to P .

This example tautology is quite simple, however it can be easily modified to introduce

superfluous complexity; consider that the propositional variable P in the formula can

be replaced by any well-formed formula of the logic and the resulting formula will still

be tautological. Further, there are many tautologies of much greater complexity than

P ∨ ¬P , such as the formula ((P → Q) ∧ (R → S)) → ((P ∨ R) → (Q ∨ S)). By

74

composing such tautologies with other formulae, as well as conjoining them with other

tautologies, one can create increasingly complex formulae which nonetheless will always

be evaluated as true under all interpretations.

Similar to the method of implication chaining described above in Section 4.3.2, tau

tology injection can be used to increase the resources needed to establish a particular

contradiction by making the formula which contradicts the opponents knowledge the

consequent of a material consequence relation with a tautology as the antecedent. The

opponent’s automated theorem proving component must then establish the truth of the

antecedent (the tautology) before it can establish the truth of the consequent.

Example 24. The formula Q in propositional logic can be re-written as T → Q, where

T is any tautology. For instance:

• (P ∨ ¬P) → Q

• (P ↔ (P ∧ P)) → Q

• ((R ↔ S) ↔ (¬R ↔ ¬S)) → Q

Each of these formulae is logically equivalent to Q, however when combined with the

formula ¬Q, a theorem prover will require greater resources to establish the contradiction

than it would to determine {Q, ¬Q} f ⊥.

Example 25. Consider the formula (P ∨¬P) → Q, which can be written in clausal form

as { ¬P ∨ Q, P ∨ Q }.

Using a resolution based theorem prover, it will take three inference steps to determine

that { ¬P ∨ Q, P ∨ Q, ¬Q } f ⊥ :

¬P ∨ Q, P ∨ Q
1. Resolution: , Result: { ¬P ∨ Q, P ∨ Q, ¬Q, Q ∨ Q }

Q ∨ Q
Q ∨ Q

2. Factorization: , Result: { ¬P ∨ Q, P ∨ Q, ¬Q, Q ∨ Q, Q }
Q

75

¬Q, Q
3. Resolution: , Result: { ¬P, P ∨ Q, ¬Q, Q ∨ Q, Q, D }

D

Given that { Q, ¬Q } f ⊥ can be established in a single inference step, the injec

tion of a simple tautology is able to increase the resource consumption of the theorem

prover. Tautologies of arbitrary complexity can be constructed to exhaust specific re

source bounds using a number of simple methods, such as conjoining tautologies in the

antecedent, or replacing symbols in the tautologies with more complex formulae.

Example 26. The tautology used in Example 25 can be scaled by conjoining multiple

instances of the tautology, albeit with different symbols. For instance:

((P1 ∨ ¬P1) ∧ ... ∧ (Pn ∨ ¬Pn)) → Q

The general clausal form for the above formula is rather unwieldy, and so we shall

examine the case of determining a contradiction between this formula for n = 2 and

the formula Q, in order to compare to the case of n = 1 given in Example 25. For

((P1 ∨ ¬P1) ∧ (P2 ∨ ¬P2)) → Q then, the clausal form is:

Δ = { Q ∨ ¬P1 ∨ ¬P2, Q ∨ ¬P1 ∨ P2, Q ∨ P1 ∨ ¬P2, Q ∨ P1 ∨ P2 }

Let Δ0 = Δ ∪ { ¬Q }. In order to establish that Δ0 f ⊥ using a resolution based

theorem prover, the following inference steps are performed:

Q ∨ P1 ∨ P2, Q ∨ ¬P1 ∨ P2
1. Resolution: , Result: Δ1 = Δ0 ∪ { Q ∨ Q ∨ P2 ∨ P2 }

Q ∨ Q ∨ P2 ∨ P2

Q ∨ Q ∨ P2 ∨ P2
2. Factorization: , Result: Δ2 = Δ1 ∪ { Q ∨ P2 ∨ P2 }

Q ∨ P2 ∨ P2

Q ∨ P2 ∨ P2
3. Factorization: , Result: Δ3 = Δ2 ∪ { Q ∨ P2 }

Q ∨ P2

Q ∨ P2, Q ∨ P1 ∨ ¬P2
4. Resolution: , Result: Δ4 = Δ3 ∪ { Q ∨ Q ∨ P1 }

Q ∨ Q ∨ P1

Q ∨ Q ∨ P1
5. Factorization: , Result: Δ5 = Δ4 ∪ { Q ∨ P1 }

Q ∨ P1

76

Q ∨ P1, Q ∨ ¬P1 ∨ ¬P2
6. Resolution: , Result: Δ6 = Δ5 ∪ { Q ∨ Q ∨ ¬P2 }

Q ∨ Q ∨ ¬P2

Q ∨ Q ∨ ¬P2
7. Factorization: , Result: Δ7 = Δ6 ∪ { Q ∨ ¬P2 }

Q ∨ ¬P2

Q ∨ ¬P2, Q ∨ P2
8. Resolution: , Result: Δ8 = Δ7 ∪ { Q ∨ Q }

Q ∨ Q
Q ∨ Q

9. Factorization: , Result: Δ9 = Δ8 ∪ { Q }
Q

Q, ¬Q
10. Resolution: , Result: Δ10 = Δ9 ∪ { D }

D

The choice of n for a particular resource bound k is not as clear as with the method of

implication chaining described in Section 4.3.2, given the growth pattern of inference rules

needed to determine a contradiction using n conjoined tautologies of the form Pi ∨ ¬Pi

in the antecedent of the constructed consequence relation. Nonetheless, for any given

resource bound k, it is possible to find a value for n such that the opponent’s theorem

prover cannot determine the existence of a contradiction within k inference steps.

4.4 Example of Malicious Argumentation

We shall now examine the use of malicious argumentation in a more complete example

scenario. After a description of the system, a “normal” interaction scenario is consid

ered first, wherein an agent presents an unacceptable argument to its opponent, and the

opponent is able to discover and respond with an attacking argument. Modifications

to the initial argument’s support are then considered, using the methods of implication

chaining and tautology injection described in Section 4.3 to exhaust the opponent’s re

source bounds before the attacking argument can be discovered. In this way, the initially

unacceptable argument is rendered acceptable to the opponent, while still retaining the

initial semantic content of the argument.

77

4.4.1 Example System

In this example, a company uses a task postings board to list requests for certain com

ponents to be designed and constructed by outside contractors. The items listed on this

board contain the functional requirements of the components to be designed, written as

formal specifications in first-order logic, and possibly other requirements, also in first-

order logic. A manager agent am is then responsible for testing the acceptability of design

arguments proposed by a contractor agent ac, responding with an attacking argument if

the design is found to be unacceptable.

4.4.1.1 Example Semantics

The specifications, as well as the design proposed by contractor agents, make use of a

shared catalogue language Σcat based on a common ontology of symbols and concepts Γcat,

which describes myriad parts, properties and functionalities available to the company and

their contractors. Along with the design specification Θspec ⊂ Σcat, the company also

publishes a set of conditions Θint ⊂ Σcat, which describes internal corporate policies or

other knowledge apart from the design specifications that may be used to attack design

proposal arguments. Designs proposed by contractors then must have a conclusion that

satisfies Θspec, and be acceptable with relation to Θspec ∪ Θint.

The following predicates are used by am to describe design specifications and other

internal conditions, and also by ac in the design proposal.

UseC(X) : design uses component X

HasP (X, Y) : component X has property Y

P rovF (X, Y) : component X provides function Y

Conn(X, Y) : component X connected to component Y

78

4.4.1.2 Testing Acceptability

Rather than describing a full dialogue between the agents, we shall focus here on the

initial assert locution in which ac proposes a design argument (Φ, α), and am tests the

acceptability of this argument, responding with an attacking argument if one is found.

Due to resource constraints, am will impose an inference count limit k on the process

of determining argument acceptance, as described in Section 2.5; we do not, however,

consider any resource constraints placed on ac, as we are concerned here only with the

process of resource bound acceptance used by am which may be exploited by malicious

agents.

In order to determine the acceptability of (Φ, α) with respect to its internal knowledge

Θint and the design specifications Θspec, agent am will attempt to construct an argument

(Ψ, β) from the formulae in Θspec ∪ Θint such that (Ψ, β) attacks (Φ, α). The resource

bounded undercut relation described in Section 4.3.1, limited to k inference steps, will be

used for the attacks relation in this example. Agent am will then need to test the resource

bounded attack relation decision procedure (Ψ, β) undercutk (Φ, α). To accomplish this,

am will need to employ its automated reasoner to determine whether there exists (Ψ, β)

in A(Θspec ∪ Θint) such that Φ ∪ {β} fk ⊥. While argument evaluation as described in

Section 2.2.1 is more complicated than simply testing a single attack relation, for the

sake of brevity we focus on a single attack relation decision, which will nonetheless be a

component of argument evaluation. In the case that an argument (Ψ, β) cannot be found

such that (Ψ, β) undercutk (Φ, α), then (Φ, α) will be considered acceptable.

4.4.1.3 Automated Reasoning Component

In this example, we make use of first-order predicate logic for the underlying logic of the

argumentation system, similar to the approaches found in [PSJ98, BH05, Alo04]. For

experimental purposes, we make use of the Prover9 automated theorem prover [McC].

79

While Prover9 allows the use of several variants of the resolution calculus, to keep our

example simple, we configure it to use only the binary resolution inference rule (and

factorization). Further, we have modified the Prover9 system to impose a limit on the

number of inference steps performed during the search for a proof, which we use as the

resource limit of the deduction component.

4.4.2 “Normal” Interaction Scenario

In this example, the manager agent am has posted a request for a design of a component

which can produce fixed amplitude waveforms of 20mA at a frequency of 30Hz, repre

sented by amp20mA and genFreq30Hz respectively. This is represented in the formal

semantics defined above as :

∃x : P rovF (x, genF req30Hz) ∧ HasP (x, amp20mA). (C1)

4.4.2.1 The Design Proposal

An external contractor agent ac analyzes this request and uses its knowledge of various

electric components to construct a design which incorporates the WG3000 wave gen

erator. However, its knowledge of this component specifies that the WG3000 must be

connected to an adequate power supply in order to function, which is represented as:

HasP (wg3000, amp20mA). (C2)

∃x : (UseC(wg3000) ∧ Conn(x, wg3000) ∧ P rovF (x, power20mA))
(C3)

→ P rovF (x, genF req30Hz).

Agent ac also has knowledge of a specific power supply which can be used for this

purpose, the PSU423, which provides the necessary 20mA output required for use with

the WG3000.

UseC(psu423) → P rovF (psu423, power20mA). (C4)

80

Along with the specifications of the components described in C2, ..., C4, agent ac must

include design specifications on their use and interconnections, expressed as:

UseC(wg3000) ∧ UseC(psu423) ∧ Conn(psu423, wg3000). (C5)

The design is expressed by agent ac as the argument (Φ, α) = ({C2, ..., C5}, C1)1 .

Upon receipt of the proposal from ac, agent am can verify the argument’s validity as

described in Section 2.3, by testing that C2 ∧ ... ∧ C5 f C1 using its automated reasoner,

as well as the conditions that C2 ∧ ...∧C5 f ⊥ and ¬∃S ' ⊂ {C2, ..., C5} : S ' f ⊥∧S ' f C1.

4.4.2.2 The Attacking Argument

However, let us assume that am has a further condition in Θint which specifies that the

component must be compliant with the Restriction of Hazardous Substances (RoHS)

directive, which agent ac has not taken into account in its design:

∀x : UseC(x) ↔ HasP (x, rohsCompliant). (C6)

Included in this directive is a restriction on the use of various toxic substances, in

cluding the use of lead:

∀x : HasP (x, rohsCompliant) ↔

¬(HasP (x, containsLead) ∨ HasP (x, containsCadmium) (C7)

∨HasP (x, containsHexavalentChromium)).

Further, am has the knowledge that the PSU423 power supply unit contains lead:

HasP (psu423, containsLead). (C8)

The clauses C6, C7 and C8 can then be used as support for the conclusion:

¬UseC(psu423). (C9)

1Formulae are entered into the theorem prover in the order they appear here

81

This can be formed into the argument (Ψ, β) = ({C6, C7, C8}, C9). Through the use

of its automated reasoner, am can determine that Φ ∪ {β} f ⊥ due to the conflicting

clauses UseC(psu423) and ¬UseC(psu423), and so the argument (Ψ, β) attacks the

argument (Φ, α). To test this example, the Prover9 automated theorem prover [McC]

was configured to use the standard simple weighted term selection search control. In this

configuration, it took the prover a single inference step to prove that Φ∪{β} f ⊥, and so

the prover could determine that Φ∪{β} fk ⊥, and therefore that (Ψ, β) undercutk (Φ, α),

for any k ≥ 1. Agent am could then respond to ac with the attacking argument (Ψ, β).

The Prover9 code for this example can be found in Appendix A.1, including statistics on

the theorem prover’s execution during the search for this proof.

4.4.3 Malicious Argumentation Scenario

Knowing the attack to the argument (Φ, α) described above, ac could make use of a

resource exhaustion strategy to overwhelm agent am’s deductive reasoning capacity before

am can determine that its argument (Ψ, β) attacks (Φ, α). This would be of advantage to

ac if, for example, it has a surplus of PSU423 units and needs to get rid of them. Using

further knowledge of the automated reasoner used by am, such as the resource bounds

and the search control, ac can modify the argument (Φ, α) so that am will not find the

contradiction within the given inference limit, in which case am will accept the argument

due to the mapping of the case of resource bounds exhaustion as described above in

Section 4.2.2.

4.4.3.1 Implication Chaining

The malicious argumentation technique of implication chaining described in Section 4.3.2

can be used by agent ac to construct a new argument (Φ ' , α). This can be accomplished

by modifying the clause C5 to make the contradicting term UseC(psu423) the consequent

of an implication chain with a true antecedent so that it cannot be resolved with the term

82

¬UseC(psu423) before the inference limit k is reached. An example of this would be to

create a sequence of fake parts, whose use implies the use of the next fake part in the

sequence, and finally the part in question. The clause C5 can then be rewritten as:

UseC(wg3000) ∧ UseC(fake1)

∧ UseC(fake1) → UseC(fake2)

∧... ∧ UseC(faken−1) → UseC(faken) (C5
n'

)

∧ UseC(faken) → UseC(psu423)

∧ Conn(psu423, wg3000).

Note that this modification of the argument’s support still does not violate the mini

mality criteria of arguments presented in Section 2.3, as the removal of any one of these

added clauses would violate the condition that Φ f α.

To test the attack relation between the new argument (Φ ' , α) and the attacking ar

gument (Ψ, β), agent am’s resource bounded automated reasoner is used to determine:

{C2, ..., C4, C5
n' } ∪ {¬UseC(psu423)} fk ⊥ (P1)

If the resource limit k is exhausted before P1 can be proven by resolving the terms

UseC(psu423) and ¬UseC(psu423) to a contradiction, then it cannot be established that

(Ψ, β)attacksk(Φ ' , α)). To demonstrate the use of this method of resource exhaustion,

'
Prover9 is used to test P1 with incremental values of k. Values of n for the clause C5

n

were then found which exceed k inferences before P1 is proven. The results of this can be

found in Table 4.1, and the Prover9 code for this example can be found in Appendix A.2,

along with more statistics from the execution of the prover on this code.

4.4.3.2 Tautology Injection

The tautology injection technique described in Section 4.3.3 can also be used to exhaust

the resources allocated to agent am’s attack relation decision procedure. A new argument

(Φ '' , α) can be constructed by agent ac, in which the term UseC(psu433) in modified to

83

inference limit (k) chain length (n)
100
200
300
400
500

49
99
149
199
249

Table 4.1: Results for Implication Chains

be the consequent of a consequence relation with a large tautology as the antecedent. By

conjoining sufficient repetitions of a single tautology, agent am will be unable to determine

that (Ψ, β) undercutk (Φ '' , α). To accomplish this, the clause C5 in the example can then

be rewritten as:

UseC(wg3000)∧

((((a1 → b1) ∧ (b1 → c1)) → (a1 → c1))

(Cn∧...∧ 5
''
)

(((an → bn) ∧ (bn → cn)) → (an → cn)))

→ UseC(psu423) ∧ Conn(psu423, wg3000).

As with the method of implication chaining described above, the Prover9 automated

theorem prover is used to test the attack relation between the new argument (Φ '' , α) and

agent am’s attacking argument (Ψ, β) by evaluating the following condition:

{C2, ..., C4, C
n '' } ∪ {¬UseC(psu423)} fk ⊥ (P2)5

The results of evaluating P2 for different values of k are shown in Table 4.2, where

a value of n has been found such that the resources k allocated to the procedure are

exhausted before P2 can be proven. The Prover9 code for this example can be found in

Appendix A.3, along with statistics for the execution of the prover on this code.

84

inference limit (k) repetitions (n)
100
200
300
400
500

3
3
3
4
4

Table 4.2: Results for Tautology Injection

85

Chapter 5

Defense Strategies

After having examined malicious strategies agents may employ in an open multi-agent

argumentation system, we now turn to considerations of how such strategies may be

defended against. In Section 5.1, modifications are described to incorporate defense

strategies into the general argumentative agent model. Section 5.2 then investigates an

initial defense strategy using pattern matching to detect instances of malicious argumen

tation strategies, particularily those described in Section 4.3. Other potential defense

strategies are then briefly described in Section 5.3, followed by a discussion of the general

principles of defense against malicious argumentation in Section 5.4.

5.1 Modifying the Agent Model

In this section, modifications to the argumentation model described in Chapter 2 are

considered, with the intention of incorporating defense strategies against malicious argu

mentation. Malicious argumentation strategies targetting different decision procedures

in the argumentation model, as described in Section 4.2, will require defense strategies to

be implemented in different components of an argumentative agent. In order to maintain

the scope of this thesis, given that the investigation into malicious strategies in Chap

ter 4 focused primarily on the argument evaluation decision procedure, so too will our

discussion of defense strategies.

In general, a defense strategy for a particular decision procedure can be implemented

as a sort of “wrapper” for the procedure. That is to say, the defense strategy may perform

pre-computations on the input to the procedure before the decision procedure itself is

86

executed, and further there may be post-computations on the output of the decision

procedure. It may also be necessary to modify the decision procedure itself so that the

output is richer; that is, rather than a simply boolean result, the procedure could be

modified to return additional information regarding its execution, with the intention of

providing the defense strategy’s post-computation with greater information regarding the

execution of the procedure. While the wrapper model may not always be an applicable

method of implementing a defense strategy against malicious argumentation, in general

it is a good way to conceptualize the role of defense in the general argumentative agent

model.

If the purpose of a defense wrapper for an agent’s decision procedure is to detect

instances of malicious argumentation strategies targetting that decision procedure, it

must also be considered how the defense strategy will respond to a positive detection of

a malicious strategy. In the case that a malicious strategy is not detected by the defense

wrapper, the decision procedure it defends may be executed normally. When a malicious

strategy is identified by the defense wrapper, the output of the procedure will necessarily

need to be modified. However, this may not be as simple as inverting the output of

the decision procedure. For instance, consider a defense strategy wrapping the attack

relation decision procedure used during the argument evaluation procedure. In the case

when a malicious strategy is identified by the defense wrapper, yet the attack relation

decision procedure nonetheless does not identify an attack relation between the given

arguments, it still cannot be decided that an attack between the arguments does in fact

exist. To respond with a counter-attack on the basis that the argument being tested has

been identified as implementing a malicious strategy may break the felicity condition of

the counter-attack performative. It may be that if sufficient resources were available to

complete the decision procedure, an attack relation would still not be found. It may be

that the malicious strategy was intended to exhaust the resources of a different attack

87

relation decision, and not the particular one being tested. Nonetheless, if the defense

strategy identifies a malicious strategy being employed in a particular argument, this

result cannot be ignored.

Incorporating defense strategies into the argumentation model cannot therefore be as

simple as implementing defense wrappers designed to detect instances of malicious argu

mentation strategies. These wrappers may be used to detect malicious argumentation,

yet the model must also be modified to incorporate means of reacting to the detection

of malicious argumentation. Towards this end, the dialogue game may be modified by

adding additional performatives relating to detection of malicious argumentation strate

gies. Furthermore, the termination conditions of the dialogue may be conditional on the

outcome of the defense wrappers; an agent may simply terminate the interaction in the

case that it detects its opponent employing a malicious argumentation strategy. The

agent’s logic, that is, the logic of justification, may also be modified to incorporate iden

tification of malicious arguments. These topics will be discussed further in Section 5.3,

albeit in no great depth, as a proper investigation of these topics requisites a research

project of greater scope than is afforded by this thesis. The primary focus of this chapter

will be to investigate a defense strategy for identifying a particular malicious argumenta

tion strategy targeting the attack relation decision procedure; considerations of how the

outcome of this defense wrapper will be incorporated into the larger agent model, i.e:

the dialogue game, logic, etc., must be left for future research into this topic.

5.2 Detecting Patterns of Malicious Arguments

The malicious argumentation strategies described in Section 4.3 are based on the princi

ple of expanding the syntactic form of an argument while retaining the semantic content,

such that the resources allocated to the deduction system used in an agent’s decision pro

88

cedures will be exhausted before a particular result can be derived. This is accomplished

by modifying the argument using relatively simple syntactic patterns, such as long chains

of simple implications (Section 4.3.2) or conjuctions of simple tautologies to construct

large, scalable tautologies (Section 4.3.3). These strategies are designed to target the at

tack relation decision procedure used by the argument evaluation decision procedure, in

order to “hide” particular attack relations by exhausting the resources of the deduction

system before a conflict between arguments can be decided. A defense strategy could then

be implemented by constructing a wrapper around the attack relation decision procedure

designed to detect these patterned syntactic constructions.

5.2.1 Pattern Matching Implication Chains

The implication chaining malicious argumentation strategy described in Section 4.3.2

makes use of a simple, scalable syntactic modification of an argument’s contents to ex

haust the resource bounds of an opponent’s attack relation decision procedure. As the

modification is constructed in a purely mechanical manner, it creates an easily identifi

able pattern in the syntactic form of the argument, which can be detected through the

use of a fairly simple pattern matching algorithm. The attack relation decision procedure

can then be modified by implementing a defense wrapper around the procedure in or

der to identify instances of implication chain patterns before the attack relation decision

procedure is executed.

There is a danger, however, in simply matching chains of implications and identify

ing them as instances of a malicious argumentation strategy. For instance, a “chain”

consisting of a single implication will likely occur often in entirely legitimate arguments;

even larger chains of implications can be used in arguments that are constructed with no

malicious intent. The pattern matching must therefore be performed in such a way as to

minimize the possibility of such false-positive identifications of malicious argumentation

89

strategies. For implication chains then, there is a particular type that can be identified as

an instance of malicious argumentation with a high degree of certainty: those implication

chains of such a length that the resources allocated to the deduction system would be

exhausted before their final consequent can be derived. While it may be possible that

such implication chains occur “naturally” within the system, it is far more likely that

they are instances of a malicious argumentation strategy.

A pattern to detect implication chains of a particular length can then be constructed

as follows:

λ1, λ1 → λ2, ..., λn−1 → λn

To match this pattern against a given argument (Φ, α), each λi (1 ≤ i ≤ n) needs

to be substituted with an appropriate formula from the support set Φ ⊆ L. The chain

length n for the pattern can then be set to a minimal value such that the resources

allocated to the prover will be exhausted before the final consequent matched by λn can

be derived. While it may be that implication chains employed by a malicious resource

exhaustion strategy are much longer than what is matched by this pattern, nonetheless

the initial segment of the chain will be matched by this pattern, regardless of how much

longer the actual chain is.

Example 27. Let (Φ, α) = ({P1, P1 → P2 , ..., Pm−1 → Pm, Pm → Q}, Q)

Assume a resource bound of k inference steps, and that m = 2k.

Let n = k be the length of the implication chain pattern to be matched.

The following substitutions can then be identified:

λ1 ≈ P1, λ2 ≈ P2, ..., λn ≈ Pm/2

Even though the implication chain in (Φ, α) continues from P(m/2)+1 to Pm, an im

plication chain pattern of length n has been found in the argument that will at the very

least exhaust the resources available, regardless of how much longer it is.

90

5.2.2 Counter-Measure Against this Defense Strategy

As shown above, the simple implication chaining malicious argumentation strategy de

scribed in Section 4.3.2 can be detected through the use of a fairly simple pattern match

ing defense strategy. However, using the concept of implication chains as the basic scaling

pattern, more complex malicious argumentation strategies can be developed for which

the defense strategy will be inadequate. The pattern matching technique described above

is based on the idea that the consequent of one link in the chain will be the antecedent

of the next link. Knowing this, a malicious strategy based on implication chaining could

be developed that will retain the basic principle of constructing arbitrarily long chains

of implications, yet does not follow this consequent/antecedent matching pattern.

Example 28. P0, P0 → P1, (P0 ∧ P1) → P2 , ..., (Pn−2 ∧ Pn−1) → Pn

This example of an implication chaining strategy achieves the same effect as the basic

implication chaining strategy from Section 4.3.2, yet will not be detected by the pattern

matching defense strategy described above in Section 5.2.1, as the consequent of each

implication is not syntactically equivalent to the antecedent of the next implication in

the chain.

As with the basic implication chaining strategy, this new strategy constructs implica

tion chains through a highly patterned, mechanical construction. It would therefore be a

simple matter to construct a pattern matching defense strategy to detect this malicious

argumentation strategy as well. However, it would also be a simple matter to construct

another variant of the basic implication chaining strategy for which a pattern matching

defense strategy has not been constructed yet. For every patterned malicious argumen

tation strategy, a pattern matching defense strategy can be constructed, and conversely,

for every defense based on pattern matching, new malicious patterns can be constructed

that are not detected by the defense strategy.

91

5.2.3 General Limitations of Pattern Matching

The basic idea behind the type of malicious argumentation strategies discussed in this

thesis is to construct a syntactic modification that both preserves the original semantic

content of an argument, and can be arbitrarily scaled to exhaust any resource bound

imposed on the underlying deduction system. This scaling is accomplished by repeating

a particular syntactic pattern, connected either through implication as seen in the impli

cation chaining strategy (Section 4.3.2), a conjuction as used in the tautology injection

strategy (Section 4.3.3), or other means not yet explored. Defense strategies can then be

implemented to detect these patterns, and identify when the occurance of such a pattern

is likely being used to exhaust the deduction system’s resource bounds. However, as

shown in Section 5.2.2 above, it can often be a relatively simple task to construct new

variants of the basic scaling pattern that are not detected by the defense strategies. A

defense strategy can implement pattern matching techniques to address all instances of

known malicious argumentation patterns, and even anticipate new patterns that have

not yet been encountered, but it cannot address every possible syntactic manipulation

that could be used to exhaust the deduction system’s resource bounds.

Consider the tautology injection strategy from Section 4.3.3; using a repeated con

junction of a single simple tautology, a large syntactic construct can be built to exhaust

a particular resource bound. While a pattern matching defense could be developed to

identify the particular tautology used in the example, it is well known that there are an

infinite number of possible tautologies, of greater and more elaborate complexity than

the one used herein. It would be impossible to account for every single tautology in the

pattern matching algorithm. Further, a simple modification to the malicious strategy

would be to use different tautologies in conjunction with one another, rather than simply

repeating the same tautology. This would further increase the difficulty in detecting this

type of malicious argumentation strategy. Regardless of the number of patterns a defense

92

strategy accounts for, there will always be an infinite number of patterns it cannot detect.

Further, pattern matching itself is not a trivial operation. While the algorithms are,

in general, less expensive than those used by the deduction system, they nonetheless re

quire resources to execute. The more patterns that a particular defense strategy accounts

for, the greater the resources required to complete its analysis of a given argument. It

will likely be necessary to impose resource bounds on any defense strategy implemented

in an argumentation system, and as such, it may be that malicious argumentation strate

gies are developed specifically to exhaust the resources allocated to an agent’s defense

mechanisms. Furthermore, it may be that, through happenstance, legitimate arguments

are identified as containing malicious argumentation patterns by the defense mechanisms.

As the number of patterns tested by a defense strategy grows, so too does the chance of

false-positive identifications of malicious argumentation. Therefore, while pattern match

ing can be used as a means of identifying instances of particular malicious argumentation

strategies, it is by no means a perfect defense strategy against malicious argumentation.

5.3 Other Potential Defense Strategies

While the pattern matching defense strategy discussed in Section 5.2 above is an obvious

means of implementing a defense strategy, it is certainly not the only means of defending

against malicious argumentation. In this section, other potential defense strategies will

be addressed, albeit to no great depth. This includes considerations of how the outcome

of malicious argumentation detection mechanisms (the defense wrappers described in

Section 5.1) can be incorporated into the larger agent model, as well as how the logic of

justification and the protocol governing the dialogue game might be modified to integrate

a defense strategy into the agent model. This discussion of defense strategies should be

seen as merely illustrative rather than exhaustive; there are myriad means by which an

93

agent may defend against malicious arguments, and a thorough investigation of these

strategies is well beyond the scope of this thesis. As with the previous section, this

discussion should be understood as a motivation for future research into this expansive

topic, rather than good and proper research in and of itself.

5.3.1 Mapping the Outcome of Defense Wrappers

As discussed in Section 5.1, decision procedures susceptible to malicious argumentation

can be modified to incorporate a defense wrapper designed to detect instances of mali

cious argumentation. This may be implemented as a pre-processing pattern matching

algorithm as described in Section 5.2, or as a post-processing algorithm making use of

information resulting from the execution of the decision procedure. Regardless of the

specific implementation, however, the outcome of the defense wrapper needs to be incor

porated into the larger agent model.

Rather than considering every decision procedure in the argumentative agent model,

we shall focus this discussion on the attack relation decision procedure in the argument

evaluation process, as has been done numerous times throughout this thesis. Consider

then an implementation of the pattern matching defense wrapper; in the case that the

defense wrapper does not identify a potential malicious argumentation pattern in the

input to the attack relation decision procedure, the decision procedure itself can execute

normally. However, when the pattern matching wrapper identifies an instance of a mali

cious argumentation pattern, the correct outcome of the procedure is not entirely clear.

As mentioned above, even a positive identification of a malicious pattern does not imply

that the malicious pattern was designed to hide the specific attack relation being cur

rently tested. The decision procedure cannot then return a positive result that an attack

relation does in fact exist between the input arguments being tested. To do so would

possibly violate the felicity conditions of the counter-attack performative; that is, the

94

agent might respond with a counter-attack argument that is not in fact a counter-attack.

However, given that the defense wrapper identified the input as containing a malicious

pattern, it would be remiss for the system to simply ignore this result. Rather than

strictly modifying the boolean output of the wrapped decision procedure (in this case,

positive / negative identification of an attack relation), a more complex response can be

considered. The first we shall consider would be to simply reject the argument. That is

not to say that the argument is rejected because it can be attacked; when an attack is

found, the agent responds with a counter-attack, as is the way of the dialectic process of

justification. Rather, a rejection would likely constitute the removal of that particular

argument from the dialectic process entirely, or in the most extreme case, a termination

of the dialogue itself. The specific nature of such a rejection would have to be decided at

the level of the dialectic protocol, but regardless of the implementation, this is a fairly

extreme response to the detection of a pattern that only holds the possibility of being

employed in a malicious resource exhaustion strategy.

Rejection of an argument is not the only means of incorporating the results of a de

fense wrapper. Another strategy might be to “flatten” the results of the pattern matching

algorithm. That is to say, similar to the way that inference rules in the deductive sys

tem match patterns of logical formulae to manipulate the syntactic representation of

the semantic content in a logic, the pattern matching defense wrapper can be seen as

a pre-processing syntactic manipulation designed to identify and reduce very specific

syntactic patterns. If the pattern matching defense wrapper described in Section 5.2.1

above were to identify a long chain of inferences eventually ending in the consequent

Q, the argument fed as input to the attack relation decision procedure can be syntac

tically modified by simply replacing the chain with the consequent Q. As the pattern

matching defense wrapper is designed to identify specific implication chain patterns of a

particular minimum length, this pseudo inference rule is nowhere near complete (albeit,

95

hopefully, sound). Nonetheless, implementation of very specific “inference rules” in the

defense wrapper designed to detect known patterns of malicious argumentation may be

a significant reduction in computational resources required, in comparrison to only using

the general inference rules of the deduction system itself, therefore allowing the system

to efficiently detect counter-attacks for particular arguments.

5.3.2 Modifying the Logic of Justification

As described in Section 2.2.1, the logic of justification is based on the notion of an

extension; a particular subset of the arguments presented in the dialogue game (or,

more abstractly, in the argumentation framework) that satisfies a particular criteria.

Those arguments belonging to an extension defined by the acceptability semantics used

by the system are justified, whereas those that do not belong to the extension are not

justified. However, the notions of justification and acceptability can be modified to

incorporate the computational resource bounds imposed on a practical implementation

of an argumentation system. For instance, an extension can be segregated into two classes

of arguments: those for which the process of justification could be completed within the

given computational resource bounds, and those for which the resources allocated to

the process were exhausted before completion. These could be identified as the classes

complete acceptance and resource exhausted acceptance, respectively.

The segregation of these two classes follows quite simply from the outcome of the

decision procedures. It is only necessary for the decision procedure to report whether

it was able to complete its decision within the imposed resource bounds. For instance,

when performing argument evaluation, if any of the attack relation decisions cannot be

completed within resource bounds, the outcome of evaluation is placed into the resource

exhausted class. The outcome may still be acceptable or unacceptable, but nonethe

less the result is “weakened” due to being a member of the resource exhausted class.

96

Conversely, if the entire process was able to complete within the given resource bounds,

this can be seen as a “stronger” result of the argument evaluation procedure, with the

arguments then being members of the complete acceptance class.

At this point, the terms “stronger” and “weaker” have been used to relate to the

difference between membership in these classes. However, these are intuitive notions; to

properly implement such a defense strategy, it would be necessary to formally define the

notions of “stronger” and “weaker” with respect to the argumentation model as a whole.

This could entail a modification of the attack relation conditions, in that weaker accept

able arguments may not attack stronger ones. Further, this may require modifications

at the level of the dialectic protocol; weak-accept, strong-accept, weak-counter-attack,

strong-counter-attack, etc.. Given that agents engage in an argumentative dialogue for

some higher purpose, such as deliberation, negotiation or pursuasion, it must then be

considered how weak and strong notions of justification affect this higher level decision

procedure. This modification which, at face value, seems relatively simple, would in fact

require heavy modifications to the argumentation model as a whole. Nonetheless, it may

prove to be a valuable defense strategy against malicious resource exhaustion strategies.

5.3.3 Modifying the Dialectic Protocol

As already mentioned in the preceding sections, the incorporation of a defense strategy

into the larger argumentation model may require modifications to dialectic protocol. New

performatives may be introduced to the protocol, such as the argument rejection per-

formative discussed in Section 5.3.1, or the weak/strong acceptance and counter-attack

performatives discussed in Section 5.3.2 above. Implementing such new performatives is

not as simple as introducing them at the level of the dialectic protocol; it must also be

considered how their condition’s are satisfied by the lower levels of the argumentation

model, and what effects their introduction will have on the larger decision procedure for

97

which the dialectic procedure is employed, such as deliberation, negotiation, persuasion

or otherwise.

In addition to the various performatives already briefly discussed, there are others

that warrant consideration. For instance, in the case that resources are exhausted while

computing a particular decision procedure, instead of rejecting an argument or demoting

its status as described above, an agent may request a simplified version of the argument.

This request could be formalized as an additional performative in the dialectic protocol.

However, the addition of a new performative into the dialectic protocol may introduce

new complications which require deeper consideration. For instance, it is necessary to

consider how an agent may determine whether the new “simplified” argument it recieves

in response to this request is actually semantically similar to the original argument for

which resources were exhausted. Given that the agent did not have sufficient resources

to complete its analysis of the original argument, it has no real basis for comparison with

the new argument. Further, it must be considered how such a performative opens up the

potential for abuse by malicious agents; an agent may repeatedly request simplifications

on arguments for which it has sufficient resources to perform decisions on, with the aim

of strategically consuming the resources allocated to the dialogue as a whole.

Given that the rules of the dialogue game govern the interactions between agents, any

additions to these rules will invariably introduce new complexities into the agent interac

tions. While these complexities may allow for certain desirable behaviours that would be

impossible given the constraints of a simpler dialectic protocol, they may also introduce

undesirable consequences which may not be immediately perceptible. Particularly in

open multi-agent systems, agents may not “play by the rules”; performatives often have

conditions dependent on an agent’s internal state, which cannot be externally verified.

Therefore, while modifications to the dialectic protocol may provide an important tool

for incorporating defense strategies against malicious argumentation, such modifications

98

may also introduce the possibility of new malicious strategies, and so must be performed

conservatively and with attention paid to the potential for abuse.

5.4 General Principles of Defense

As seen in the discussion of a mechanism for detecting instances of malicious argumenta

tion by pattern matching in Section 5.2, as well as the general strategies for incorporating

defense mechanisms into the larger argumentative agent model discussed in Section 5.3,

none of these methods provides a perfect means to defend against malicious argumenta

tion strategies. Whether there are too many different malicious argumentation strategies

to account for, that the defense mechanisms themselves must be resource bounded, or that

the implementation of the defense strategy would open the possibility of new malicious

argumentation strategies, all defenses against malicious argumentation are necessarily

imperfect. All defense strategies require a trade-off; rejecting arguments for which argu

ment evaluation can’t complete within the given resource bounds provides a higher degree

of security, yet restricts the scope of legitimate arguments that can be employed within

the system; matching a greater number of malicious argumentation patterns in turn re

quires a greater amount of resources to be allocated to pattern matching, restricting the

resources available to other decision procedures involved in argumentation. Any defense

strategy devoloped to counteract malicious argumentation may in turn be undermined

by further developments in malicious argumentation strategies.

Nonetheless, it is important for defense strategies against malicious argumentation

to be investigated and developed. If no defenses against malicious argumentation are

considered, then even the simplest resource exhaustion strategy can be employed to

great effect. The situation of defending against malicious argumentation can be seen as

analogous to that of detecting and defending against virii and malware [Ayc08]; it would

99

be impossible to construct a “perfect” defense that could detect any virus or piece of

malicious software. However, it is still necessary to detect virii and malware that are

well known, so that the simplest virus can’t wreak havok on our computing equipment.

Further, virus and malware defense strategies are subject to the same practical resource

bounds as defenses against malicious argumentation; a computer can’t spend all of its

resources examining software for malicious code, as the computing resources need to also

be used by the actual software a user wishes to run. Therefore, both in argumentation

defense strategies and virus and malware detection, a balance must be struck between

the robustness of the defense strategy and the resources allocated to the actual tasks the

system is designed to accomplish.

The general principles of defense against malicious argumentation can then be sum

marized as follows:

1.	 No Perfect Defense - all defenses against malicious argumentation are necessarily

imperfect, in that they cannot account for every possible malicious argumentation

strategy

2.	 Balanced Defense - all defense strategies must make trade-offs, either between ro

bustness and security, between coverage of attacks and resource consumption, or

otherwise

3.	 Raise the Bar - at the very least, a defense strategy should prevent the simplest

malicious argumentation strategies from being effective, so that a malicious agent

requires a certain degree of expertise to surpass the defenses

By recognizing the essential inadequacies of defense strategies, the developer of an

argumentation system will never be under the illusion that their system is impenetrable.

Understanding the balance that needs to be struck, and the dimensions upon which a

100

defense strategy needs to be balanced, is crucial for implementing an effective defense

strategy that does not undermine the purpose of the system being developed. And finally,

it is imperative that a defense strategy be implemented in such a way as to at least make

it difficult for an agent to successfully employ a malicious argumentation strategy. By

addressing the simple malicious argumentation strategies, such as those described in this

thesis, greater expert knowledge is required by a malicious agent, therefore reducing the

number of agents able to successfully employ a malicious argumentation strategy. In

this way, the risk of using argumentation in open-multi agent systems can be reduced; it

cannot be eliminated entirely, but it must be reduced to an acceptable level before such

systems can be considered for popular use in commercial applications or otherwise.

101

Chapter 6

Conclusion

The goal of this thesis was to introduce the potential for malicious actions performed by

agents involved in argumentation in an open multi-agent system, as well as to provide an

outline of the difficulties inherit in defending against such malicious argumentation. To

accomplish this, a general account of malicious resource exhaustion strategies targeting

the intractability of decisions in the underlying formal logical language was given, as well

as a practical example of how such a resource exhaustion strategy could be instantiated

to manipulate the outcome of the argument evaluation procedure. Further, the topic of

defense was addressed from a high-level perspective, analyzing a few strategies that could

be used to counter-act certain malicious argumentation strategies, and concluding with

a general analysis of defense and the necessary insufficiency of any particular defense

strategy.

In summary, although argumentation is a powerful means of communicative interac

tion in open multi-agent systems, the advantages gained through the use of argumentation

are not without consequence. By employing an underlying formal logical language to con

vey the content of arguments, agents gain an expressive power that cannot be attained

through simple symbolic methods of communication. However, the advantages gained

through the expressive power of a logical language are balanced against the intractability

of certain procedures on this language, such as deciding consistency and logical entail

ment. Due to the necessity of limiting the resources available to agents during their

respective turns in a dialectic interaction, resource exhaustion is an unavoidable possibil

ity. In a closed argumentation system, the effects of resource exhaustion can be minimized

through the use of fairness criteria and a greater control over the actions of agents in the

102

system. However, in open multi-agent argumentation systems, fairness of resource con

sumption cannot be guaranteed by protocol, and the system as a whole has little control

over the actions of individual agents. As agents in an open-multi agent system generally

execute on uncontrolled client software, not only may agents be self-interested, but they

may attempt to perform malicious actions to gain an advantage over other agents in

the system. Defense strategies may be implemented to counter-act malicious resource

exhaustion strategies, such as matching syntactic patterns or altering the rules of the

dialogue game controlling the agents’ interactions. However, such defense strategies are

necessarily imperfect; while certain patterns may be detected, it would be impossible to

exhaustively detect every pattern that could be used by a malicious agent; while the rules

of the dialogue game may be modified to facilitate defense strategies, these modifications

may also open up new potential malicious exploitations of the system. Nonetheless, it

is necessary to implement some means of defense against malicious argumentation, or

these systems will be susceptible to the simplest exploits. The goal of defense is therefore

to increase the effort required of a malicious agent, so as to minimize the potential for

exploitation while still retaining the core functionality of the argumentation system.

6.1 Future Work

There are myriad directions in which the concepts presented in this thesis could be

explored. While a preliminary examination of malicious agent strategies in open multi-

agent argumentation systems has been given, it is by no means an exhaustive investigation

of this topic. The discussion of malicious strategies presented in this thesis has primarily

been focused on the argument evaluation procedure, yet even for this decision procedure,

only two methods of implementing a malicious strategy were given; an investigation

into further implementations of resource exhaustion strategies targeting the argument

103

evaluation procedure would likely yield many new techniques. Apart from argument

evaluation, the argument validity and dialogue game decision procedures were also briefly

evaluated for their susceptibility to malicious argumentation; a deeper investigation into

particular malicious argumentation techniques targeting these decision procedures would

also be warranted.

The discussion of strategies to defend against malicious argumentation presented in

this thesis is both preliminary and high-level; the primary goal of this thesis was to

establish the potential for malicious activity in open multi-agent argumentation systems.

A deeper investigation into defense strategies is certainly an important direction for

future research into this broad topic. Both in the development of techniques to counter

act particular forms of malicious argumentation, as well as research into general strategic

considerations of defense against malicious argumentation, there is a vast potential for

investigation into this aspect of practical argumentation.

For both the development of new malicious argumentation strategies and investiga

tion into defense techniques to counter-act malicious argumentation, the development of

proper implementations would be invaluable. Currently, the field of argumentation has

little in the way of implemented systems, however this is quickly changing. The current

state of theoretical research into automated argumentation has reached a point where

the development of applications is warranted, and the community is certainly increasing

its focus on this direction of research. By working in conjunction with existing projects

in development, or even developing separate software in order to perform experiments on

malicious argumentation and defense strategies, new insights into the strategic consider

ations of practical argumentation systems will likely arise that would not otherwise.

Conversely, there are also theoretical aspects of malicious argumentation that would

be valuable to investigate. While this topic is primarily concerned with a practical

aspect of implemented argumentation systems, it would nonetheless be useful to introduce

104

a higher degree of formalism to the concepts discussed within this thesis. This may

include a formal characterization of vulnerability due to the particular features of an

argumentation system, or a more precise definition of a malicious resource exhaustion

strategy by introducing concepts from formal proof theories. Further, it may be valuable

to construct proofs of some of the central topics of this thesis, such as the necessary

inadequacy of defense strategies, that are now only dealt with through natural language

arguments.

It should therefore be apparent that the topic of malicious argumentation strategies

in open multi-agent systems holds great potential for future research projects. Investiga

tion into either the development and understanding of malicious strategies and defense

strategies, both from a practical and a theoretical perspective, would likely produce some

interesting and valuable results. Given that the argumentation community is just now

emerging from its theoretical infancy into a mature field warranting the development

of practical applications, continued research into these strategic manipulations and the

possibility of malicious exploitation is not only justified, but necessary.

105

Appendix A

Prover9 Example Code

A.1 Unmodified Example Code

set(raw).

set(binary_resolution).

set(print_gen).

set(prolog_style_variables).

formulas(sos).

%%% Support {C2,...,C5} from argument <{C2, ..., C5}, C1> %%%

% Clause C2 %

HasP(wg3000, amp20mA).

% Clause C3 %

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA))

-> ProvF(wg3000, genFreq30Hz).

% Clause C4 %

UseC(psu423) -> ProvF(psu423, power20mA).

% Clause C5 %

UseC(wg3000).

106

UseC(psu423).

Conn(psu423, wg3000).

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%%

-UseC(psu423).

end_of_list.

A.1.1 Statistics

Given=0. Generated=7. Kept=7. proofs=1.

Usable=0. Sos=0. Demods=0. Limbo=6, Disabled=7. Hints=0.

Kept_by_rule=0, Deleted_by_rule=0.

Forward_subsumed=0. Back_subsumed=0.

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.

Demod_attempts=0. Demod_rewrites=0.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=0.

Megabytes=0.02.

User_CPU=0.01, System_CPU=0.03, Wall_clock=0.

http:System_CPU=0.03
http:User_CPU=0.01
http:Megabytes=0.02

107

A.2 Implication Chaining Example Code

set(raw).

set(binary_resolution).

set(print_gen).

set(prolog_style_variables).

formulas(sos).

%%% Support {C2,...,C5’n} from argument <{C2, ..., C5’n}, C1> %%%

% Clause C2 %

HasP(wg3000, amp20mA).

% Clause C3 %

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA))

-> ProvF(wg3000, genFreq30Hz).

% Clause C4 %

UseC(psu423) -> ProvF(psu423, power20mA).

% Clause C5’n (where n = 5) %

UseC(wg3000).

UseC(fake1).

UseC(fake1) -> UseC(fake2).

UseC(fake2) -> UseC(fake3).

UseC(fake3) -> UseC(fake4).

108

UseC(fake4) -> UseC(fake5).

UseC(fake5) -> UseC(psu423).

Conn(psu423, wg3000).

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%%

-UseC(psu423).

end_of_list.

A.2.1 Statistics

Given=14. Generated=21. Kept=21. proofs=1.

Usable=9. Sos=4. Demods=0. Limbo=0, Disabled=19. Hints=0.

Kept_by_rule=0, Deleted_by_rule=0.

Forward_subsumed=0. Back_subsumed=7.

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.

Demod_attempts=0. Demod_rewrites=0.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=18.

Megabytes=0.03.

User_CPU=0.01, System_CPU=0.03, Wall_clock=0.

http:System_CPU=0.03
http:User_CPU=0.01
http:Megabytes=0.03

109

A.3 Tautology Injection Example Code

set(raw).

set(binary_resolution).

set(print_gen).

set(prolog_style_variables).

formulas(sos).

%%% Support {C2,...,C5’’n} from argument <{C2, ..., C5’’n}, C1> %%%

% Clause C2 %

HasP(wg3000, amp20mA).

% Clause C3 %

exists X (UseC(wg3000) & Conn(X, wg3000) & ProvF(X, power20mA)) ->

ProvF(wg3000, genFreq30Hz).

% Clause C4 %

UseC(psu423) -> ProvF(psu423, power20mA).

% Clause C5’’n (where n = 5) %

UseC(wg3000).

((((a1 -> b1) & (b1 -> c1)) -> (a1 -> c1)) &

(((a2 -> b2) & (b2 -> c2)) -> (a2 -> c2)) &

(((a3 -> b3) & (b3 -> c3)) -> (a3 -> c3)) &

(((a4 -> b4) & (b4 -> c4)) -> (a4 -> c4)) &

110

(((a5 -> b5) & (b5 -> c5)) -> (a5 -> c5))

) -> UseC(psu423).

Conn(psu423, wg3000).

%%% Conclusion C9 from argument <{C6,C7,C8}, C9> %%%

-UseC(psu423).

end_of_list.

A.3.1 Statistics

Given=5893. Generated=127926. Kept=23554. proofs=1.

Usable=22. Sos=2. Demods=0. Limbo=0, Disabled=24559. Hints=0.

Kept_by_rule=0, Deleted_by_rule=0.

Forward_subsumed=104372. Back_subsumed=23529.

Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0.

New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0.

Demod_attempts=0. Demod_rewrites=0.

Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0.

Nonunit_fsub_feature_tests=58916. Nonunit_bsub_feature_tests=47063.

Megabytes=10.16.

User_CPU=8.08, System_CPU=13.62, Wall_clock=108.

http:System_CPU=13.62
http:User_CPU=8.08
http:Megabytes=10.16

Bibliography

[Alo04]	 Eduardo Alonso. Rights and argumentation in open multi-agent systems. Ar

tificial Intelligence Review, 21(1):3–24, 2004.

[AMP00] Leila Amgoud, N Maudet, and Simon Parsons. Modelling dialogues using ar

gumentation. In Proceedings of the Fourth International Conference on Multi-

Agent Systems, pages 31–38, 2000.

[APM00] Leila Amgoud, Simon Parsons, and N Maudet. Arguments, dialogue, and

negotiation. aa, pp:338–342, 2000.

[Ayc08]	 J. Aycock. Spyware and Adware, volume 50 of Advances in Information Secu

rity. Springer-Verlag New York Inc, 2008.

[BG09]	 Pietro Baroni and Massimiliano Giacomin. Semantics of Abstract Argument

Systems, pages 25–44. Springer Publishing Company, Inc., 2009.

[BH01]	 Philippe Besnard and Anthony Hunter. A logic-based theory of deductive

arguments. Proceedings Of The National Conference On Artificial Intelligence,

128:203–235, 2001.

[BH05]	 Philippe Besnard and Anthony Hunter. Practical first-order argumentation.

In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL

INTELLIGENCE, volume 20, page 590. Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press; 1999, 2005.

[BIP88]	 Michael E. Bratman, David J. Israel, and Martha E. Pollack. Plans and

resource-bounded practical reasoning. Computational Intelligence, 4(3):349–

355, September 1988.

111

112

[BN02a] L. Brito and J. Neves. Argument exchange in heterogeneous electronic com

merce environments. Proceedings of the first international joint, pages 410–417,

2002.

[BN02b] L. Brito and J. Neves. Properties and Complexity in Feasible Logic-Based

Argumentation for Electronic Commerce. Lecture notes in computer science,

pages 90–100, 2002.

[Dun95] Phan Minh Dung. On the Acceptability of Arguments and its Fundamental

Role in Non-Monotonic Reasoning, Logic Programming and N-Person Games.

Artificial Intelligence, 77:321–357, 1995.

[Dun03] P.E. Dunne. Prevarication in dispute protocols. In Proceedings of the 9th

international conference on Artificial intelligence and law, pages 12–21. ACM,

2003.

[Fuc96] M. Fuchs. Powerful Search Heuristics Based on Weighted Symbols, Level and

Features. Proceedings of the 9th Florida Artificial Intelligence Research Sym

posium, 1996.

[KM03] Antonis C Kakas and P. Moraitis. Argumentation based decision making for

autonomous agents. In Proceedings of the second international joint conference

on Autonomous agents and multiagent systems, pages 883–890. ACM New

York, NY, USA, 2003.

[Lou98] R.P. Loui. Process and policy: Resource-bounded nondemonstrative reasoning.

Computational Intelligence, 14(1):1–38, 1998.

[McC] W. McCune. Prover9 manual. http://www.cs.unm.edu/~mccune/mace4/

manual/2009-11A/, as seen on Oct. 8, 2010.

http://www.cs.unm.edu/~mccune/mace4/manual/2009-11A/
http://www.cs.unm.edu/~mccune/mace4/manual/2009-11A/

113

[MP02]	 Peter McBurney and Simon Parsons. Dialogue Games in Multi-Agent Systems.

Informal Logic, 22(3):257–274, 2002.

[Pol91]	 John L Pollock. A Theory of Defeasible Reasoning. International Journal,

6:33–54, 1991.

[PS99]	 Henry Prakken and Giovanni Sartor. A system for defeasible argumentation,

with defeasible priorities. Practical Reasoning, pages 510–524, 1999.

[PSJ98]	 Simon Parsons, Carles Sierra, and N Jennings. Agents that reason and nego

tiate by arguing. Journal of Logic and Computation, 8(3):261, 1998.

[PWA03] Simon Parsons, Michael Wooldridge, and Leila Amgoud. Properties and com

plexity of some formal inter-agent dialogues. Journal of Logic and Computa

tion, 13(3):347, 2003.

[RL08]	 Iyad Rahwan and Kate Larson. Mechanism design for abstract argumentation.

In Proceedings of the 7th international joint conference on Autonomous agents

and multiagent systems-Volume 2, pages 1031–1038. International Foundation

for Autonomous Agents and Multiagent Systems, 2008.

[SC00]	 Katia Sycara and H. Chi Wong. Adding Security and Trust To Multiagent

Systems. Applied Artificial Intelligence, 14(9):927–941, October 2000.

[WK95]	 D.N. Walton and E.C.W. Krabbe. Commitment in dialogue: Basic concepts

of interpersonal reasoning. State Univ of New York Pr, 1995.

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Argumentation
	Proof and Argument
	Abstract Argumentation
	Argumentation Semantics
	Preferred, Grounded and Complete Extensions

	Structured Arguments
	Attack Relation Semantics
	Attack Relations, Argument Evaluation and Deduction

	Argumentation in Multi-Agent Systems
	Dialogue Games
	Semantics of Assertion and Acceptance
	Argumentation in Open Multi-Agent Systems

	Resource Bounded Argumentation

	Automated Theorem Proving
	Logics
	The Logical Language L
	Normal Forms
	The Truth Domain W
	The Interpretations I
	Models and Satisfiability

	Logical Calculus
	Inference Rules
	Resolution
	Unification

	Soundness and Completeness
	Search Control

	Malicious Argumentation
	Consequences of Resource Bounded Argumentation
	Decision Procedures Susceptible to Malicious Argumentation
	Argument Validity
	Argument Evaluation
	The Dialogue Game

	Strategically Manipulating Arguments
	A Resource Bounded Undercut Relation
	Implication Chaining
	Tautology Injection

	Example of Malicious Argumentation
	Example System
	``Normal'' Interaction Scenario
	Malicious Argumentation Scenario

	Defense Strategies
	Modifying the Agent Model
	Detecting Patterns of Malicious Arguments
	Pattern Matching Implication Chains
	Counter-Measure Against this Defense Strategy
	General Limitations of Pattern Matching

	Other Potential Defense Strategies
	Mapping the Outcome of Defense Wrappers
	Modifying the Logic of Justification
	Modifying the Dialectic Protocol

	General Principles of Defense

	Conclusion
	Future Work

	Prover9 Example Code
	Unmodified Example Code
	Statistics

	Implication Chaining Example Code
	Statistics

	Tautology Injection Example Code
	Statistics

	Bibliography

