Prob. 1) The D Latch as shown in Fig. 1 below can be constructed with only 4 NAND gates. This can be done by removing the inverter and connecting the output of the upper NAND gate to the input of the lower gate. Use conventional or computer-based logic simulation to show that the new circuit is functionally the same as the older one.

Fig. 1. A D-latch

Prob. 2) A sequential circuit with two D flip-flops A and B, two inputs X and Y, and one output Z is specified by the following input equations:

$$\overline{D_A} = XY + XA \quad \overline{D_B} = XB + XA \quad Z = XB$$

a) Draw the logic diagram of the circuit
b) Derive the state table
c) Derive the state diagram

Prob. 5) Design a sequential circuit with two D flip-flops A and B and one input X. When $X = 0$, the state of the circuit remains the same. When $X = 1$, the circuit goes through the state transitions from 00 to 10 to 11 to 01, back to 00, and then repeats.

Prob. 6) A sequential circuit has two flip-flops A and B, one input X and one output Y. The state diagram is shown in Fig. 4. Design the circuit with D flip-flops.

Figure 4