Chapter 5
Internal Memory
Contents

• Semiconductor main memory
 — Organization
 — DRAM and SRAM
 — Types of ROM
 — Chip logic
 — Chip packaging
 — Module organization

• Error correction

• Advanced DRAM organization
 — Synchronous DRAM
 — Rambus DRAM
 — Cache DRAM
5.1 Semiconductor Main Memory

- Memory cell
 - Basic element of a semiconductor memory
 - Properties
 - exhibit two stable states for 1 and 0
 - can be written into
 - can be read from
Memory Cell Operation

(a) Write

(b) Read
Semiconductor Memory Types

<table>
<thead>
<tr>
<th>Memory Type</th>
<th>Category</th>
<th>Erasure</th>
<th>Write Mechanism</th>
<th>Volatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random-access memory (RAM)</td>
<td>Read-write memory</td>
<td>Electrically, byte-level</td>
<td>Electrically</td>
<td>Volatile</td>
</tr>
<tr>
<td>Read-only memory (ROM)</td>
<td>Read-only memory</td>
<td>Not possible</td>
<td>Masks</td>
<td></td>
</tr>
<tr>
<td>Programmable ROM (PROM)</td>
<td>Read-only memory</td>
<td></td>
<td></td>
<td>Nonvolatile</td>
</tr>
<tr>
<td>Erasable PROM (EPROM)</td>
<td>Read-mostly memory</td>
<td>UV light, chip-level</td>
<td>Electrically</td>
<td></td>
</tr>
<tr>
<td>Electrically Erasable PROM (EEPROM)</td>
<td>Read-mostly memory</td>
<td>Electrically, byte-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flash memory</td>
<td></td>
<td>Electrically, block-level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semiconductor Memory

• RAM
 — Misnamed as all semiconductor memory is random access
 — Read/Write
 — Volatile
 — Temporary storage
 — Dynamic or Static
Dynamic RAM

- Bits are stored as charge in capacitors
 - Capacitors have tendency to discharge
 - Need refreshing even when powered
- Simpler construction (Fig 5.2(a))
 - Smaller circuit per bit
 - Less expensive
- Need refresh circuits
 - Slower
- Used for main memory
- Essentially analogue device
 - Level of charge determines value
Dynamic RAM (DRAM) Cell
DRAM Operation

• Address line active when bit read or written
 — Transistor switch closed (current flows)

• Write
 — Voltage to bit line
 - High for 1 and low for 0
 — Then signal address line
 - Transfers charge to capacitor

• Read
 — Address line selected
 - Transistor turns on
 — Charge from capacitor fed into the bit line
 - Compared with reference value to determine 0 or 1
 — Capacitor charge must be restored
Static RAM

• Bits are stored as on/off switches
 — No charges to leak
 — No refreshing needed when powered

• More complex construction
 — Larger circuit per bit
 — More expensive

• Does not need refresh circuits
 — Faster

• Used for cache

• Digital device
 — Uses flip-flops
Static RAM Operation

• Transistor arrangement gives stable logic state
 — State 1
 - C_1 high and C_2 low
 - T_1 T_4 off and T_2 T_3 on
 — State 0
 - C_1 low and C_2 high
 - T_1 T_4 on and T_2 T_3 off

• Transistors T_5 T_6 works as a switch
 — A signal applied, switch is on

• Write – apply value to B & compliment to B
• Read – value is on line B
Static RAM (SRAM) Cell
SRAM vs DRAM

- Both volatile
 - Power needed to preserve data
- Dynamic cell
 - Simpler to build, smaller
 - More dense
 - Less expensive
 - Needs refresh
 - Used for larger memory units
- Static cell
 - Faster
 - Cache
Read Only Memory (ROM)

- Permanent storage
 - Nonvolatile
- Applications
 - Microprogramming
 - Library subroutines
 - Systems programs (BIOS)
 - Function tables
Types of ROM

• Programmable ROM (once)
 — PROM
 — Needs special equipment to program

• Read “mostly” memory
 — Erasable Programmable (EPROM)
 - Before the write, all memory cells must be erased
 - Erased by UV light
 — Electrically Erasable (EEPROM)
 - Only the needed bytes can be updated
 - More expensive and less dense than EPROM
 — Flash memory
 - Possible to erase just blocks of memory (but not byte level)
 - Uses one transistor per bit (like EPROM)
Chip Logic

- **Organization of a 16 Mbit chip**
 - Can be organized as 1M of 16 bit words
 - Can be organized as one-bit-per-chip
 - Can be in between

- **A 16 Mbit chip as a 2048 x 2048 x 4 bit array**
 - Multiple DRAMs are connected to the controller to read/write a word
 - Reduced number of address pins
 - Multiplex row address and column address
 - 11 pins to each address \(2^{11}=2048\)
 - Adding one more pin doubles range of values so x4 capacity
 Refreshing

• Refresh circuit included on chip
• Refresh operation
 — Disable the chip
 — Count through all rows
 - For each row, data are read out and written back into the same location
• Takes time
• Slows down performance
Typical 16 Mb DRAM (4M x 4)
Memory Package Pins and Signals

(a) 8 Mbit EPROM

(b) 16 Mbit DRAM
A memory module of 256K 8-bit words
Module Organization (2) A memory module of 1M 8-bit words
5.2 Error Correction

• Memory system is subject to errors
 – Hard failure
 - permanent physical defect
 – Soft failure
 - random, non-destructive event that alters the contents of memory cells

• Error-correcting/Error-detecting codes
 – Using some redundancy in data representation, we can correct/detect errors
Error Correcting Code Function

Text book, pages: 149 to 153
5.3 Advanced DRAM Organization

• Basic DRAM remains same since first RAM chips
• Enhanced DRAMs
 — SDRAM
 — RDRAM
 — CDRAM
Synchronous DRAM (SDRAM)

• Access in a typical DRAM
 — Address is presented to RAM
 — After access-time delay, DRAM reads/writes
 — Processor simply waits through this delay

• Access in SDRAM
 — Synchronized to an external clock
 — Address is presented to RAM
 — DRAM responds after a set number of clock cycles
 — CPU can do other tasks while SDRAM processing

• Employs a burst mode
 — A series of data bits can be clocked out rapidly after the first bit has been accessed

• DDR-SDRAM sends data twice per clock cycle
RAMBUS DRAM (RDRAM)

- Adopted by Intel for Pentium & Itanium
- Main competitor to SDRAM
- Vertical package – all pins on one side
 - Data exchange over 28 wires < 12 cm long
- RDRAM bus is used
 - Asynchronous block-oriented protocol
 - After 480ns initial access time, 1.6 GBps
 - Bus can address up to 320 RDRAM chips at 1.6 GBps
Cache DRAM (CDRAM)

• Developed by Mitsubishi
 — Integrates a small SRAM cache (16 Kb) onto a generic DRAM chip

• Cache usage
 — As a true cache
 — As a buffer to support the serial access of a block of data
 - (Ex) To refresh a bit-mapped screen, CDRAM can prefetch the data from DRAM into SRAM buffer