Dense matrix algorithms

• We are going to study algorithms involving dense matrices (as opposed to sparse matrices)

• A very important issue is how to map a matrix onto processors
 – the combination of proper mapping and efficient algorithm is performance critical

• Main mapping schemes are:
 – striped partitioning
 – blocked partitioning
 – checkerboard partitioning
Striped partitioning

- Ways of partitioning a 16×16 matrix on 4 processors

(a) Columnwise block striping

(b) Rowwise cyclic striping
Checkerboard partitioning

- Ways of partitioning a 8×8 matrix on 16 processors
- Checkerboard partitioning splits both rows and columns

<table>
<thead>
<tr>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
<th>P_5</th>
<th>P_6</th>
<th>P_7</th>
<th>P_8</th>
<th>P_9</th>
<th>P_{10}</th>
<th>P_{11}</th>
<th>P_{12}</th>
<th>P_{13}</th>
<th>P_{14}</th>
<th>P_{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>(0,2)</td>
<td>(0,4)</td>
<td>(0,6)</td>
<td>(1,0)</td>
<td>(1,2)</td>
<td>(1,4)</td>
<td>(1,6)</td>
<td>(2,0)</td>
<td>(2,2)</td>
<td>(2,4)</td>
<td>(2,6)</td>
<td>(3,0)</td>
<td>(3,2)</td>
<td>(3,4)</td>
<td>(3,6)</td>
</tr>
<tr>
<td>(0,1)</td>
<td>(0,3)</td>
<td>(0,5)</td>
<td>(0,7)</td>
<td>(1,1)</td>
<td>(1,3)</td>
<td>(1,5)</td>
<td>(1,7)</td>
<td>(2,1)</td>
<td>(2,3)</td>
<td>(2,5)</td>
<td>(2,7)</td>
<td>(3,1)</td>
<td>(3,3)</td>
<td>(3,5)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>(1,0)</td>
<td>(1,2)</td>
<td>(1,4)</td>
<td>(1,6)</td>
<td>(2,0)</td>
<td>(2,2)</td>
<td>(2,4)</td>
<td>(2,6)</td>
<td>(3,0)</td>
<td>(3,2)</td>
<td>(3,4)</td>
<td>(3,6)</td>
<td>(4,0)</td>
<td>(4,2)</td>
<td>(4,4)</td>
<td>(4,6)</td>
</tr>
<tr>
<td>(1,1)</td>
<td>(1,3)</td>
<td>(1,5)</td>
<td>(1,7)</td>
<td>(2,1)</td>
<td>(2,3)</td>
<td>(2,5)</td>
<td>(2,7)</td>
<td>(3,1)</td>
<td>(3,3)</td>
<td>(3,5)</td>
<td>(3,7)</td>
<td>(4,1)</td>
<td>(4,3)</td>
<td>(4,5)</td>
<td>(4,7)</td>
</tr>
</tbody>
</table>

Copyright (c) 1994 Benjamin/Cummings Publishing Co.

(a) Block-checkerboard partitioning
(b) Cyclic-checkerboard partitioning
Matrix Transposition: mesh \((n^2=p)\)

- Simple case is \(n^2 = p\) i.e. one element per processor
- Algorithm for checkerboard partitioning

(a) Communication steps

(b) Final configuration
Matrix Transposition: mesh $(n^2 > p)$

- Longest path: $2\sqrt{p}$ - Block size: n^2/p
- Total comm. time: $2(t_s + t_w n^2/p) \sqrt{p}$
- Local exchange time: $n^2/2p$
Recursive Transposition Alg. (RTA)

- RTA for a 8×8 matrix
- Since each recursive step reduces the size of the subcubes by a factor of four, there is a total of $\log_4 p$ or $(\log p)/2$ steps
Matrix Transposition: hypercube

- Block-checkerboard mapping, 8×8 matrix, 16 proc. Hypercube
- The steps of the RTA involve smaller and smaller subcubes
 - corresponding nodes across subcubes are hypercube itself

Division of the matrix into four blocks and exchange of top-right and bottom-left blocks

Division of each block into four subblocks and exchange of top-right and bottom-left subblocks
Transposition: striped partitioning

- Simple case: $n \times n$ matrix on n processor (one row per proc)
 - Element $[i, j]$ moves to position $[j, i]$
- General case ($p < n$): blocks are moved, then internally transposed