Short Summery

- Classification according to memory organization
 - distributed memory
 - shared-address space
- Interconnection networks
 - dynamic networks
- crossbar, bus-based, multistage (Omega network)
Omega Network

Figure 2.10 A perfect shuffle interconnection for eight inputs and outputs.
Copyright (c) 1994 Benjamin/Cummings Publishing Co.

Figure 2.12 A complete omega network connecting eight inputs and eight outputs.
Copyright (c) 1994 Benjamin/Cummings Publishing Co.

\[
j = \begin{cases}
2i, & 0 \leq i \leq p/2 - 1 \\
2i + 1 - p, & p/2 \leq i \leq p - 1
\end{cases}
\]
Omega network features

- There are $\log_2 p$ stages each with $p/2$ switching elements each = $p/2 \times \log_2 p$ total
 - Contrast with $\Theta(p^2)$ for the crossbar switch
- Simple routing algorithm
 - At each stage, look at the corresponding bit (starting with the msb) of the source and destination address
 - If the bits are the same, messages passes through, otherwise is crossed-over
- Omega networks are blocking networks - when routes to different memory banks share a link a message might be blocked by another
 - Contrast with nonblocking crossbar switch
Blocking in omega network

- Example of blocking: either (010 to 111) or (110 to 100) has to wait until link AB is no longer in use
Static interconnection networks

- Completely connected networks
- Star-Connected Networks
- Linear Array and Ring
- Mesh Networks
- Tree Networks
- Hypercube Network
Static Interconnection Networks I

- Completely [star] connected network is the static analogous of the crossbar [bus] interconnect
Static Interconnection Networks II

- A *n-dimensional mesh* [torus or wraparound mesh] is an extension of the linear array [ring]
- Examples: Intel Paragon (2D mesh), Cray T3D (3D torus)
Tree networks

Simple trees

Fat tree
Hypercubes

- An hypercube is a multi-dimensional mesh with exactly two processors in each dimension.
- Examples: Cosmic Cube, nCube 1, SGI Origin 2000.
4D hypercube

- 4D hypercube = two 3D hypercubes with an additional link connecting corresponding processors
Hypercube Gallery

0-D hypercube 1-D hypercube 2-D hypercube 3-D hypercube

4-D hypercube
Hypercube Property

• One node connected to d others
• One bit difference in labels \iff direct link
• One hyper can be partitioned in two $(d-1)$ hypers
• The Hamming distance = shortest path length
 – Hamming distance = # of bits that are different in $source$
 and $dest = # of ones in source \oplus dest$
• Each node address contains d bits
 – fixing k of these bits, the nodes that differ in the remaining
 $(d-k)$ form $(d-k)$ dimension subcube of $2^{(d-k)}$ nodes. There are 2^k
 such subcubes.
Subcube example

- Subcubes of dimension 2 obtained by fixing the two most significant bits
K-ary d-cubes

- A k-ary d-cube is a d-dimensional mesh with k elements along each dimension
 - k is called the *radix*, d the *dimension*
 - can be built from k-ary $(d-1)$-cubes by connecting the corresponding processors into a ring
- Some of the other topologies are particular instances of the k-ary d-cube:
 - A ring interconnect with n nodes is a n-ary 1-cube
 - A two dimensional wraparound mesh of n^2 processors is a n-ary 2-cube