Performance of Parallel Systems

• Parallelism adds one architectural dimension to those that are crucial for performance
 – traditional parameters: CPU speed, memory size, …
 – new parameter: number of processors p

• Suppose you have a parallel program on a parallel architecture
 – what kind of value you can expect for the run time T_p?
 – how good is T_p with respect to the serial run time T_s

• Fundamental performance parameter is the speedup
 – $S = T_s / T_p$
Speedup

• Delicate points about speedup (S)
 – how do you get a fair measure of T_s?
 – what if the best serial algorithm is not known/too slow?
• Theoretically, speedup can never exceed p
 – speedup of p obtained if each processor runs for no more than T_s/p
• practically, one can see superlinear speedup
 – possible reasons: nonoptimal serial algorithm, or
 – architectural features favoring parallel execution
 (example: program fitting into physical memory)
Efficiency and cost

- Efficiency (E) is defined as
 $$E = S / p$$

- Cost is defined as $T_P * p$ and represents the sum of the time spent by each processor executing the program.
 - Efficiency can also be expressed as ratio of serial cost to parallel cost
 $$E = T_c / p.T_p$$
 - A parallel system is said to be *cost-optimal* if the parallel cost is proportional to T_S
 - Since efficiency is the ratio of sequential cost to parallel cost, a cost-optimal parallel system has an efficiency of $O(1)$
Example: speedup

\sum_{0}^{15}

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \]

- Sum of 16 numbers on a 16-processor on a hypercube
 - $T_S = \Theta (n)$, $T_P = \Theta (\log n)$
 - $S = \Theta (n / \log n)$
- Efficiency:
 - $E = S/p = 1/\log n$
- Cost: $\Theta (n \log n) \neq \Theta (n)$ => Not cost-optimal
Effect of granularity and data allocation on cost

• Most of the time there are only p processors to process n inputs, with $p < n$
 – mapping n computations on p processes is called *scaling down* the system
 – granularity of computation is increased because processors perform n/p times more work

• if a system is cost-optimal with n processors, it is also so when p processors do the work of n
 – if mapping performed appropriately, both computation time and comm. time (and total run time) increase by n/p
Example: effect of data mapping

- When scaling down a parallel system, the choice of how to distribute data and labor is cost critical.

Naïve approach

\[T_p = \Theta \left(\frac{n}{p} \log p \right) \]

\[\text{Cost} = \Theta \left(n \log p \right) \]

Not cost-optimal

Smart approach

\[T_p = \Theta \left(\frac{n}{p} + \log p \right) \]

\[\text{Cost} = \Theta \left(n + p \log p \right) \]

Cost-optimal if \(n = \Omega(p \log p) \)
Scalability

- The number of processors p is an upper bound on the speedup of a parallel system.
- The scalability of a system is an indication of how good is his speedup when increasing p.
 - A system is scalable if efficiency can be kept at a fixed value by increasing both p and problem size n.
Example: Scalability

- Using the "good" algorithm:
 - $T_P = n/p + 2 \log p$
 - $S = T_S / T_P = np / (n + 2 \ p \ \log p)$
 - $E = S / p = n / (n + 2 \ \ p \ \log p)$

- Speedup limited by
 - Amdahl’s Law
 - overhead due to:
 - interprocessor communication
 - load imbalance
 - extra computation with respect to serial algorithm

<table>
<thead>
<tr>
<th>n</th>
<th>p = 1</th>
<th>p = 4</th>
<th>p = 8</th>
<th>p = 16</th>
<th>p = 32</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1.0</td>
<td>.80</td>
<td>.57</td>
<td>.33</td>
<td>.17</td>
</tr>
<tr>
<td>192</td>
<td>1.0</td>
<td>.92</td>
<td>.80</td>
<td>.60</td>
<td>.38</td>
</tr>
<tr>
<td>320</td>
<td>1.0</td>
<td>.95</td>
<td>.87</td>
<td>.71</td>
<td>.50</td>
</tr>
<tr>
<td>512</td>
<td>1.0</td>
<td>.97</td>
<td>.91</td>
<td>.80</td>
<td>.62</td>
</tr>
</tbody>
</table>
The overhead function

- The size \(W \) of a problem is defined as the number of basic computation steps in the best sequential algorithm on a single processor. Note that:
 \[
 W = T_s
 \]
 if we assume it takes one unit of time for each basic operation.

- The total overhead or overhead function \(T_0(W, p) \) of a parallel system is the part of the cost \((pT_P) \) not incurred by the fastest serial algorithm:
 \[
 T_0 = p T_P - W
 \]
Example: overhead

- Using the “smart” algorithm:
 - $T_p = n/p + 2 \log p$
 - number of steps in sequential algorithm: $n - 1 \approx n$
 - $T_0 = p \left(\frac{n}{p} + 2 \log p \right) - n = 2p \log p$