Giarratano's book:

CHAPTER-3

LOGIC AND REASONING

- Knowledge and Reasoning
 - syntax and semantics
 - validity and satisfiability
 - logic languages
- Reasoning Methods
 - propositional and predicate calculus
 - inference methods
- Reasoning in Knowledge-Based Systems
 - shallow and deep reasoning
 - forward and backward chaining
 - alternative inference methods
 - meta-knowledge
Knowledge Representation Languages

- **syntax**
 - sentences of the language that are built according to the syntactic rules
 - some sentences may be nonsensical, but syntactically correct
- **semantics**
 - refers to the facts about the world for a specific sentence
 - interprets the sentence in the context of the world
 - provides **meaning** for sentences
Introduction to Logic

• expresses knowledge in a particular mathematical notation
 All birds have wings.
 \(\forall x \text{ Bird}(x) \rightarrow \text{HasWings}(x) \)

• rules of inference
 – guarantee that, given true facts or premises, the new facts or
 premises derived by applying the rules are also true
 All robins are birds.
 \(\forall x \text{ Robin}(x) \rightarrow \text{Bird}(x) \)

• given these two facts, application of an inference rule gives:
 \(\forall x \text{ Robin}(x) \rightarrow \text{HasWings}(x) \)

First order predicate logic is the basis of logic
programming languages like PROLOG

Example:

Every bird can fly \(\forall(x) \ (\text{bird}(x) \rightarrow \text{fly}(x)) \)
Penguins are birds \(\forall(x) \ (\text{penguin}(x) \rightarrow \text{bird}(x)) \)
Tweety is a penguin \(\text{penguin}(\text{Tweety}) \)
Therefore Tweety can fly \(\text{fly}(\text{Tweety}) \)
Advantages and Disadvantages of Logic

Advantages:
– deductions are guaranteed to be correct to an extent that other representation schemes have not yet reached
– easy to automate derivation of new facts

Disadvantages:
– poor computational efficiency
– uncertain, incomplete, imprecise knowledge

Logic Languages

• propositional logic
 – facts
 – true/false/unknown
• first-order logic
 – facts, objects, relations
 – true/false/unknown
• temporal logic
 – facts, objects, relations, times
 – true/false/unknown

• probability theory
 – facts
 – degree of belief [0..1]
• fuzzy logic
 – degree of truth
 – degree of belief [0..1]
Propositional Logic

Propositional logic is a subset of the predicate logic.

- Syntax
- Semantics
- Models
- Inference Rules
- Complexity

Syntax of Propositional Logic

- symbols
 - logical constants `True, False`
 - propositional symbols `P, Q, ...
 - logical connectives
 - conjunction `∧`, disjunction `∨`
 - negation `¬`
 - implication `⇒`, equivalence `⇔`
 - parentheses `(,)`
- sentences
 - constructed from simple sentences
 - conjunction, disjunction, implication, equivalence, negation
BNF Grammar Propositional Logic

Sentence \rightarrow AtomicSentence $|$ ComplexSentence

AtomicSentence \rightarrow True $|$ False $|$ P $|$ Q $|$ R $|$...

ComplexSentence \rightarrow (Sentence)
\mid Sentence Connective Sentence
\mid \neg Sentence

Connective \rightarrow \land $|$ \lor $|$ \Rightarrow $|$ \Leftrightarrow

ambiguities are resolved through precedence \neg \land \lor \Rightarrow \Leftrightarrow
or parentheses

e.g. \neg P \lor Q \land R \Rightarrow S is equivalent to (\neg P) \lor (Q \land R)) \Rightarrow S

Semantics of Propositional Logic

- interpretation of the propositional symbols and constants
 - symbols can be any arbitrary fact
 - sentences consisting of only a propositional symbols are satisfiable, but not valid
 - the constants True and False have a fixed interpretation
 - True indicates that the world is as stated
 - False indicates that the world is not as stated
 - specification of the logical connectives
 - explicitly via truth tables
• propositions can be interpreted as any facts you want
 – e.g., P means "robbins are birds", Q means "the Mike is dead", etc.

• meaning of complex sentences is derived from the meaning of its parts
 – one method is to use a truth table
 – all are easy except P => Q
 • this says that if P is true, then I claim that Q is true; otherwise I make no claim;
 • P is true and Q is true, then P => Q is true
 • P is true and Q is false, then P => Q is false
 • P is false and Q is true, then P => Q is true
 • P is false and Q is false, then P => Q is true

Validity and Satisfiability in Propositional Logic

• a sentence is valid or necessarily true if and only if it is true under all possible interpretations in all possible worlds
 – also called a tautology
 – since computers reason mostly at the syntactic level, valid sentences are very important

• a sentence is satisfiable iff there is some interpretation in some world for which it is true

• a sentence that is not satisfiable is unsatisfiable
 – also known as a contradiction
Truth Tables for Connectives in Propositional Logic

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P$</th>
<th>$P \land Q$</th>
<th>$P \lor Q$</th>
<th>$P \Rightarrow Q$</th>
<th>$P \Leftrightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Propositional Calculus

- properly formed statements that are either True or False
- syntax
 - logical constants, True and False
 - proposition symbols such as P and Q
 - logical connectives: and \land, or \lor, equivalence \Leftrightarrow, implies \Rightarrow and not \neg
 - parentheses to indicate complex sentences
- sentences in this language are created through application of the following rules
 - True and False are each (atomic) sentences
 - Propositional symbols such as P or Q are each (atomic) sentences
 - Enclosing symbols and connective in parentheses yields (complex) sentences, e.g., $(P \land Q)$
Complex Sentences in Propositional Calculus

• Combining simpler sentences with logical connectives yields complex sentences
 – conjunction
 • sentence whose main connective is and: \(P \land (Q \lor R) \)
 – disjunction
 • sentence whose main connective is or: \(A \lor (P \land Q) \)
 – implication (conditional)
 • sentence such as \((P \land Q) \rightarrow R \)
 • the left hand side is called the premise or antecedent
 • the right hand side is called the conclusion or consequent
 • implications are also known as rules or if-then statements
 – equivalence (biconditional)
 • \((P \land Q) \leftrightarrow (Q \land P) \)
 – negation
 • the only unary connective (operates only on one sentence)
 • e.g., \(\neg P \)

Inference Rules

They are more efficient than truth tables.

• Modus ponens
• Modus tollens
• Syllogism
• Resolution
• And-elimination
• And-introduction
• Or-introduction
• Double-negation elimination
• Unit resolution
Modus ponens

• eliminates =>
 \((X \Rightarrow Y), X\)

 \[\frac{(X \Rightarrow Y), X}{\therefore Y}\]

 – If it rains, then the streets will be wet.
 – It is raining.
 – Infer the conclusion: The streets will be wet.
 (affirms the antecedent)

Modus tollens

\((X \Rightarrow Y), \neg Y\)

\[\frac{\neg Y}{\therefore \neg X}\]

 – If it rains, then the streets will be wet.
 – The streets are not wet.
 – Infer the conclusion: It is not raining.

• NOTE: Avoid the fallacy of affirming the consequent:
 – If it rains, then the streets will be wet.
 – The streets are wet.
 – cannot conclude that it is raining.

• If Bacon wrote Hamlet, then Bacon was a great writer.
 – Bacon was a great writer.
 – cannot conclude that Bacon wrote Hamlet.
Syllogism

- chain implications to deduce a conclusion
 \((X \implies Y), \; (Y \implies Z)\)

 \[\hline\]
 \[\implies \]
 \[X \implies Z\]

Resolution

\((X \lor Y), \; (\sim Y \lor Z)\)

\[\hline\]
\[\implies \]
\[(X \lor Z)\]

- basis for the inference mechanism in the Prolog language and some theorem provers
Complexity issues

• truth table enumerates \(2^n\) rows of the table for any proof involving \(n\) symbol
 – it is complete
 – computation time is exponential in \(n\)
• checking a set of sentences for satisfiability is NP-complete
 – but there are some circumstances where the proof only involves a small subset of the KB, so can do some of the work in polynomial time
 – if a KB is monotonic (i.e., even if we add new sentences to a KB, all the sentences entailed by the original KB are still entailed by the new larger KB), then you can apply an inference rule locally (i.e., don't have to go checking the entire KB)

Inference Methods 1

• deduction sound
 – conclusions must follow from their premises; prototype of logical reasoning
• induction unsound
 – inference from specific cases (examples) to the general
• abduction unsound
 – reasoning from a true conclusion to premises that may have caused the conclusion
• resolution sound
 – find two clauses with complementary literals, and combine them
• generate and test unsound
 – a tentative solution is generated and tested for validity
 – often used for efficiency (trial and error)
Inference Methods 2

- default reasoning unsound
 - general or common knowledge is assumed in the absence of specific knowledge
- analogy unsound
 - a conclusion is drawn based on similarities to another situation
- heuristics unsound
 - rules of thumb based on experience
- intuition unsound
 - typically human reasoning method (no proven theory)
- nonmonotonic reasoning unsound
 - new evidence may invalidate previous knowledge
- autoepistemic unsound
 - reasoning about your own knowledge (self knowledge)

Predicate Logic

- Additional concepts (in addition to propositional logic)
 - complex objects
 - terms
 - relations
 - predicates
 - quantifiers
 - syntax
 - semantics
 - inference rules
 - usage
Objects in Predicate Logic

- distinguishable things in the real world
 - people, cars, computers, programs, ...
- frequently includes concepts
 - colors, stories, light, money, love, ...
- properties
 - describe specific aspects of objects
 - green, round, heavy, visible,
 - can be used to distinguish between objects

Relations in Predicate Logic

- establish connections between objects
- relations can be defined by the designer or user
 - neighbor, successor, next to, taller than, younger than, ...
- functions are special types of relations
 - non-ambiguous: only one output for a given input
Syntax of Predicate Logic

• also based on sentences, but more complex
 – sentences can contain terms, which represent objects
• constant symbols: A, B, C, Square
 – stand for unique objects (in a specific context)
• predicate symbols: Adjacent-to, Younger-than, ...
 – describes relations between objects
• function symbols: SQRT, Cosine, ...
 – the given object is related to exactly one other object

Semantics of Predicate Logic

• provided by interpretations for the basic constructs
 – usually suggested by meaningful names
• constants
 – the interpretation identifies the object in the real world
• predicate symbols
 – the interpretation specifies the particular relation in a model
 – may be explicitly defined through the set of tuples of objects that satisfy the relation
• function symbols
 – identifies the object referred to by a tuple of objects
 – may be defined implicitly through other functions, or explicitly through tables
BNF Grammar Predicate Logic

\[
\begin{align*}
\text{Sentence} & \rightarrow \text{AtomicSentence} \\
& | \text{Sentence \ Connective \ Sentence} \\
& | \text{Quantifier \ Variable, ... \ Sentence} \\
& | \rightarrow \text{Sentence} \ | \ (\text{Sentence}) \\
\text{AtomicSentence} & \rightarrow \text{Predicate(Term, ...)} \ | \ \text{Term} = \text{Term} \\
\text{Term} & \rightarrow \text{Function(Term, ...)} \ | \ \text{Constant} \ | \ \text{Variable} \\
\text{Connective} & \rightarrow \land | \lor | \Rightarrow | \Leftrightarrow \\
\text{Quantifier} & \rightarrow \forall | \exists \\
\text{Constant} & \rightarrow \text{A, B, C, X1, X2, Jim, Jack} \\
\text{Variable} & \rightarrow \text{a, b, c, x1, x2, counter, position} \\
\text{Predicate} & \rightarrow \text{Adjacent-To, Younger-Than,} \\
\text{Function} & \rightarrow \text{Sqrt, Cosine} \\
\end{align*}
\]

Ambiguities are resolved through precedence or parentheses.

Terms in Predicate Logic

- logical expressions that specify objects
- constants and variables are terms
- more complex terms are constructed from function symbols and simpler terms, enclosed in parentheses
 - basically a complicated name of an object
- semantics is constructed from the basic components, and the definition of the functions involved
 - either through explicit descriptions (e.g. table), or via other functions
Unification in Predicate Logic

- The process of finding substitution for variables to make arguments match is called unification.
 - a substitution is the simultaneous replacement of variable instances by terms, providing a “binding” for the variable
 - without unification, the matching between rules would be restricted to constants
 - \(~F(y) \lor H(a,y), \ F(b)\) (b can be substitute for y)
 - unification itself is a very powerful and possibly complex operation
 - in many practical implementations, restrictions are imposed

Universal Quantification in Predicate Logic

- states that a predicate P is holds for all objects x in the universe under discourse \(\forall x \ P(x)\)
- the sentence is true if and only if all the individual sentences where the variable x is replaced by the individual objects it can stand for are true
Existential Quantification in Predicate Logic

- states that a predicate P holds for some objects in the universe
 $$\exists x \ P(x)$$
- the sentence is true if and only if there is at least one true individual sentence where the variable x is replaced by the individual objects it can stand for

Horn clauses or sentences in Predicate Logic

- class of sentences for which a polynomial-time inference procedure exists
 $$P_1 \land P_2 \land \ldots \land P_n \Rightarrow Q$$
 where P_i and Q are non-negated atomic sentences
- not every knowledge base can be written as a collection of Horn sentences
- Horn clauses are essentially rules of the form
 $$\text{If } P \land P_2 \land \ldots \land P_n \text{ then } Q$$
Reasoning in Knowledge-Based Systems

- shallow and deep reasoning
- forward and backward chaining
- alternative inference methods
- metaknowledge

Shallow and Deep Reasoning

- shallow reasoning
 - also called experiential reasoning
 - aims at describing aspects of the world heuristically
 - short inference chains
 - possibly complex rules
- deep reasoning
 - also called causal reasoning
 - aims at building a model of the world that behaves like the “real thing”
 - long inference chains
 - often simple rules that describe cause and effect relationships
Examples Shallow and Deep Reasoning

IF a car has
 a good battery
 good spark plugs
 gas
 good tires
THEN the car can move

IF the battery is good
THEN there is electricity
IF there is electricity AND
 good spark plugs
THEN the spark plugs will fire
IF the spark plugs fire AND
 there is gas
THEN the engine will run
IF the engine runs AND
 there are good tires
THEN the car can move

Forward Chaining

• given a set of basic facts, we try to derive a conclusion from these facts
• example: What can we estimate about Clyde?
Forward Chaining Example

Modus Ponens:

- IF elephant(x) THEN mammal(x)
- IF mammal(x) THEN animal(x)
- elephant(Clyde)

Unification:

- find compatible values for variables

Backward Chaining

- try to find supportive evidence (i.e. facts) for a hypothesis
- example: Is there evidence that Clyde is an animal?
Backward Chaining Example

- **IF** elephant(x) **THEN** mammal(x)
- **IF** mammal(x) **THEN** animal(x)
- elephant(Clyde)

modus ponens:

- **IF** p **THEN** q
- p
- q

- animal(Clyde)
- **IF** mammal(Clyde) **THEN** animal(Clyde)
- **IF** elephant(Clyde) **THEN** mammal(Clyde)
- elephant (Clyde)

unification:

find compatible values for variables

Comparision of Chaining Methods

<table>
<thead>
<tr>
<th>Forward Chaining</th>
<th>Backward Chaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>planning, control</td>
<td>diagnosis</td>
</tr>
<tr>
<td>data-driven</td>
<td>goal-driven (hypothesis)</td>
</tr>
<tr>
<td>bottom-up reasoning</td>
<td>top-down reasoning</td>
</tr>
<tr>
<td>find possible conclusions supported by given facts</td>
<td>find facts that support a given hypothesis</td>
</tr>
<tr>
<td>similar to breadth-first search</td>
<td>similar to depth-first search</td>
</tr>
<tr>
<td>antecedents (LHS) control evaluation</td>
<td>consequents (RHS) control evaluation</td>
</tr>
</tbody>
</table>
Alternative Inference Methods

- theorem proving
 - emphasis on mathematical proofs, not so much on performance and ease of use
- probabilistic reasoning
 - integrates probabilities into the reasoning process
- fuzzy reasoning
 - enables the use of ill-defined predicates

Metaknowledge

- deals with “knowledge about knowledge”
 - e.g. reasoning about properties of knowledge representation schemes, or inference mechanisms
 - usually relies on higher order logic
 - in (first order) predicate logic, quantifiers are applied to variables
 - second-order predicate logic allows the use of quantifiers for function and predicate symbols
 - equality is an important second order axiom
 - two objects are equal if all their properties (predicates) are equal
 - may result in substantial performance problems