Tree and Its Implementation

Tessema M. Mengistu
Department of Computer Science
Southern Illinois University Carbondale
tessema.mengistu@siu.edu
Room - Faner 3131
Outline

• Introduction to Tree
• Types of Tree
 – Binary Tree
 – Expression Tree
 – General Tree
• Tree Traversals
• Tree ADT
• Binary Search Trees
Introduction to Tree

• The data organizations that you have seen so far have placed data in a linear order.
 – E.g. Stack, Queue, Bag, etc

• Data classification as group or sub group is also important
 – Nonlinear

• A tree provides a hierarchical organization of data items
 – Data items have ancestors and descendants
Introduction to Tree

- Family Tree
Introduction to Tree

- University’s administrative structure
Introduction to Tree

- Folders hierarchy in a computer

- Any other example???
Introduction to Tree

• Tree
 – A set of nodes connected by edges that indicate the relationships among the nodes
 – The nodes are arranged in levels that indicate the nodes’ hierarchy
 – At the top level is a single node called the root
 – The nodes at each successive level of a tree are the children of the nodes at the previous level
Tree Concepts

- Root of an ADT tree is at tree’s top
 - Only node with no parent
 - All other nodes have one parent each
- Each node can have children (descendant)
 - A node with children is a parent (ancestor)
 - A node without children is a leaf
- Nodes with the same parent are called siblings
Tree Concepts

• General tree
 – Node can have any number of children

• N-ary tree
 – Node has at most n children
 – Binary tree node has at most 2 children

• Node and its descendants form a subtree of the original tree

• Subtree of a node
 – Tree rooted at a child of that node

• Subtree of a tree
 – Subtree of the tree’s root
Tree Concepts

• Height of a tree
 – Number of levels in the tree
 • The height of a one-node tree is 1,
 • The height of an empty tree is 0
 • Height of tree \(T = 1 + \text{height of the tallest subtree of } T \)

• We can reach any node in a tree by following a path
 – Begins at the root and goes from node to node along the edges that join them
Tree Concepts

• The path between the root and any other node is unique.

• The **length of a path** is the number of edges that compose it.

• The height of a tree is 1 more than the length of the longest of the paths between its root and its leaves.

• The height of a tree is the number of nodes along the longest path between the root and a leaf.
Binary Trees

• A binary tree has at most two children
 – **left child** and the **right child**.

• The **left subtree** is rooted at **B** and the **right subtree** is rooted at **C**
Binary Trees

• Full Tree
 – A binary tree of height h has all of its leafs at level h
 – Every non-leaf (parent) has exactly two children
Binary Tree

• Complete Tree
 – If all levels of a binary tree but the last contain as many nodes as possible
 – The nodes on the last level are filled in from left to right
• Full?
• Complete?
Height of Full / Complete Tree

• We can compute the number of nodes that each tree contains as a function of its height.
• The number of nodes in a full binary tree is:

\[
\sum_{i=0}^{h-1} 2^i = 2^h - 1.
\]

• With the same token, if we have \(n \) nodes the height of the full binary tree will be:

\[
\begin{align*}
n &= 2^h - 1 \\
2^h &= n + 1 \\
h &= \log_2 (n + 1)
\end{align*}
\]
Height of ...

Full Tree

<table>
<thead>
<tr>
<th>Height</th>
<th>Number of Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1 = 2^1 - 1$</td>
</tr>
<tr>
<td>3</td>
<td>$7 = 2^3 - 1$</td>
</tr>
<tr>
<td>4</td>
<td>$15 = 2^4 - 1$</td>
</tr>
<tr>
<td>5</td>
<td>$31 = 2^5 - 1$</td>
</tr>
</tbody>
</table>
Traversals of a Tree

• Must visit/process each data item exactly once
• Nodes can be visited in different orders
• For a binary tree
 – Visit the root
 – Visit all nodes in root’s left subtree
 – Visit all nodes in root’s right subtree
• Could visit root before, between, or after subtrees
Traversals of a Tree

• Preorder traversal
 – Visit the *root* before we visit the root’s subtrees
 – Visit all the nodes in the root’s left subtree
 – Visit the nodes in the right subtree
Traversals of a Tree

- **Inorder traversal**
 - Visit all the nodes in the root’s left subtree
 - Visit the root
 - Visit all the nodes in the root’s right subtree
Traversals of a Tree

• Postorder traversal
 – Visit all the nodes in the root’s left subtree
 – Visit all the nodes in the root’s right subtree
 – Visit the root
Traversals of a Tree

• Level-order
 – Begins at the root and visits nodes one level at a time.
 – Within a level, it visits nodes from left to right.
 – Also called breadth first traversal
Traversals of a Tree

- General Tree

(a) Preorder traversal

(b) Postorder traversal
Traversals of a Tree

• Example
public interface TreeInterface<T> {
 public T getRootData();
 public int getHeight();
 public int getNumberOfNodes();
 public boolean isEmpty();
 public void clear();
} // end TreeInterface
Tree ADT

- Traversals
 - Iterator the traverses through the tree

```java
import java.util.Iterator;
public interface TreeIteratorInterface<T> {
    public Iterator<T> getPreorderIterator();
    public Iterator<T> getPostorderIterator();
    public Iterator<T> getInorderIterator();
    public Iterator<T> getLevelOrderIterator();
} // end TreeIteratorInterface
```
Tree ADT

• Binary Tree

```java
public interface BinaryTreeInterface<T>
    extends TreeInterface<T>, TreeIteratorInterface<T>
{
    public void setTree(T rootData);

    public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
                        BinaryTreeInterface<T> rightTree);

} // end BinaryTreeInterface
```
Example

```java
BinaryTreeInterface<String> dTree = new BinaryTree<String>();
dTree.setTree("D");
BinaryTreeInterface<String> fTree = new BinaryTree<String>();
fTree.setTree("F");
BinaryTreeInterface<String> gTree = new BinaryTree<String>();
gTree.setTree("G");
BinaryTreeInterface<String> hTree = new BinaryTree<String>();
hTree.setTree("H");
BinaryTreeInterface<String> emptyTree = new BinaryTree<String>();

// form larger subtrees
BinaryTreeInterface<String> eTree = new BinaryTree<String>();
eTree.setTree("E", fTree, gTree); // subtree rooted at E
BinaryTreeInterface<String> bTree = new BinaryTree<String>();
bTree.setTree("B", dTree, eTree); // subtree rooted at B

BinaryTreeInterface<String> cTree = new BinaryTree<String>();
cTree.setTree("C", emptyTree, hTree); // subtree rooted at C

BinaryTreeInterface<String> aTree = new BinaryTree<String>();
aTree.setTree("A", bTree, cTree); // desired tree rooted at A
```
Example cont ...

```java
System.out.println("Root of tree contains " + aTree.getRootData());
System.out.println("Height of tree is " + aTree.getHeight());
System.out.println("Tree has " + aTree.getNumberofNodes() + " nodes");

// display nodes in preorder
System.out.println("A preorder traversal visits nodes in this order:");
Iterator<String> preorder = aTree.getPreorderIterator();
while (preorder.hasNext())
    System.out.print(preorder.next() + " ");
System.out.println();
```
Examples of Binary Tree

• Expression Trees
 – We can use a binary tree to represent an algebraic expression
 • The root of the tree contains the operator (binary)
 • The root’s children contain the operands for the operator.
 – Inorder- infix expression
 – Preorder – prefix expression
 – Postorder – postfix expression
(a) \(a / b \)
(b) \(a \times b + c \)
(c) \(a \times (b + c) \)
(d) \(a \times (b + c \times d) / e \)
Expression Tree

• PostOrder evaluation gives postfix expression evaluation

```java
Algorithm evaluate(expressionTree)
if (expressionTree is empty)
    return 0
else
{
    firstOperand = evaluate(left subtree of expressionTree)
    secondOperand = evaluate(right subtree of expressionTree)
    operator = the root of expressionTree
    return the result of the operation operator and its operands firstOperand and secondOperand
}
```
Decision Trees

• Used for expert systems
 – Helps users solve problems
 – Parent node asks question
 – Child nodes provide conclusion or further question
 – Nodes that are conclusions would have no children and so they would be leaves

• Decision trees are generally n-ary
 – Expert system application often binary
Decision Tree

Is the picture clear?
- No
 - Is the screen blank?
 - No
 - Is there sound?
 - No
 - Check power cord
 - Yes
 - Yes
 - Yes
- Yes
 - Is there sound?
 - No
 - Yes
 - Check mute button
Implementation of Binary Tree

- The elements in a tree are called nodes
- It contains
 - Reference to a data object
 - References to its left child and right child
interface BinaryNodeInterface<T> {
 public T getData();
 public void setData(T newData);
 public BinaryNodeInterface<T> getLeftChild();
 public BinaryNodeInterface<T> getRightChild();
 public void setLeftChild(BinaryNodeInterface<T> leftChild);
 public void setRightChild(BinaryNodeInterface<T> rightChild);
 public boolean hasLeftChild();
 public boolean hasRightChild();
 public boolean isLeaf();
 public int getNumberOfNodes();
 public int getHeight();
 public BinaryNodeInterface<T> copy();
} // end BinaryNodeInterface
class BinaryNode<T> implements BinaryNodeInterface<T>
{
 private T data;
 private BinaryNode<T> left;
 private BinaryNode<T> right;

 public BinaryNode()
 {
 this(null); // call next constructor
 } // end default constructor

 public BinaryNode(T dataPortion)
 {
 this(dataPortion, null, null); // call next constructor
 } // end constructor

 public BinaryNode(T dataPortion, BinaryNode<T> leftChild, BinaryNode<T> rightChild)
 {
 data = dataPortion;
 left = leftChild;
 right = rightChild;
 } // end constructor
public T getData()
{
 return data;
} // end getData

public void setData(T newData)
{
 data = newData;
} // end setData

public BinaryNodeInterface<T> getLeftChild()
{
 return left;
} // end getLeftChild

public void setLeftChild(BinaryNodeInterface<T> leftChild)
{
 left = (BinaryNode<T>)leftChild;
} // end setLeftChild

public boolean hasLeftChild()
{
 return left != null;
} // end hasLeftChild
public boolean isLeaf()
{
 return (left == null) && (right == null);
} // end isLeaf

public BinaryNodeInterface<T> copy()
{
 BinaryNode<T> newRoot = new BinaryNode<T>(data);

 if (left != null)
 newRoot.left = (BinaryNode<T>)left.copy();

 if (right != null)
 newRoot.right = (BinaryNode<T>)right.copy();

 return newRoot;
} // end copy
public int getHeight()
{
 return getHeight(this); // call private getHeight
} // end getHeight

private int getHeight(BinaryNode<T> node)
{
 int height = 0;
 if (node != null)
 {
 height = 1 + Math.max(getHeight(node.left),
 getHeight(node.right));
 }
 return height;
} // end getHeight

public int getNumberOfNodes()
{
 int leftNumber = 0;
 int rightNumber = 0;
 if (left != null)
 {
 leftNumber = left.getNumberOfNodes();
 }
 if (right != null)
 {
 rightNumber = right.getNumberOfNodes();
 }
 return 1 + leftNumber + rightNumber;
} // end getNumberOfNodes
public interface BinaryTreeInterface<T> extends TreeInterface<T>, TreeIteratorInterface<T> {
 public void setTree(T rootData);
 public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
 BinaryTreeInterface<T> rightTree);
} // end BinaryTreeInterface
public class BinaryTree<T> implements BinaryTreeInterface<T> {

 private BinaryTreeInterface<T> root;

 public BinaryTree() {
 root = null;
 } // end default constructor

 public BinaryTree(T rootData) {
 root = new BinaryTree<T>(rootData);
 } // end constructor

 public BinaryTree(T rootData, BinaryTree<T> leftTree, BinaryTree<T> rightTree) {
 privateSetTree(rootData, leftTree, rightTree);
 } // end constructor

 public void setTree(T rootData) {
 root = new BinaryTree<T>(rootData);
 } // end setTree

 public void setTree(T rootData, BinaryTreeInterface<T> leftTree, BinaryTreeInterface<T> rightTree) {
 privateSetTree(rootData, (BinaryTree<T>)leftTree, (BinaryTree<T>)rightTree);
 } // end setTree
private void privateSetTree(T rootData, BinaryTree<T> leftTree, BinaryTree<T> rightTree)
{
 root = new BinaryNode<T>(rootData);
 if ((leftTree != null) && !leftTree.isEmpty())
 root.setLeftChild(leftTree.root);

 if ((rightTree != null) && !rightTree.isEmpty())
 {
 if (rightTree != leftTree)
 root.setRightChild(rightTree.root);
 else
 root.setRightChild(rightTree.root.copy());
 } // end if

 if ((leftTree != null) && (leftTree != this))
 leftTree.clear();

 if ((rightTree != null) && (rightTree != this))
 rightTree.clear();
} // end privateSetTree

public T getRootData()
{
 T rootData = null;

 if (root != null)
 rootData = root.getData();

 return rootData;
} // end getRootData
public boolean isEmpty()
{
 return root == null;
} // end isEmpty

public void clear()
{
 root = null;
} // end clear

protected void setRootData(T rootData)
{
 root.setData(rootData);
} // end setRootData

protected void setRootNode(BinaryNodeInterface<T> rootNode)
{
 root = rootNode;
} // end setRootNode

protected BinaryNodeInterface<T> getRootNode()
{
 return root;
} // end getRootNode
Tree Traversals

• Inorder traversal

```java
public void inorderTraverse()
{
    inorderTraverse(root);
} // end inorderTraverse

private void inorderTraverse(BinaryNodeInterface<T> node)
{
    if (node != null)
    {
        inorderTraverse(node.getLeftChild());
        System.out.println(node.getData());
        inorderTraverse(node.getRightChild());
    } // end if
} // end inorderTraverse
```
Tree Traversals

- Preorder Traversal

```java
public void preorderTraverse()
{
    preorderTraverse(root);
} // end inorderTraverse

private void preorderTraverse(BinaryNodeInterface<T> node)
{
    if (node != null)
    {
        System.out.println(node.getData());
        preorderTraverse(node.getLeftChild());
        preorderTraverse(node.getRightChild());
    } // end if
} // end preorderTraverse
```
Tree Traversals

• Postorder??
Tree Traversals using Iterator

• The previous traversal methods only display the data during the traversal
• The entire traversal takes place once the method is invoked
• Traversals as iterators can do more than simply display data during a visit and can control when each visit takes place
• Recall that Java’s interface Iterator declares the methods hasNext and next
• An iterative version of `inorderTraverse` using stack
public void inorderTraverse()
{
 StackInterface<BinaryNodeInterface<T>> nodeStack =
 new LinkedStack<BinaryNodeInterface<T>>();
 BinaryNodeInterface<T> currentNode = root;

 while (!nodeStack.isEmpty() || (currentNode != null))
 {
 // find leftmost node with no left child
 while (currentNode != null)
 {
 nodeStack.push(currentNode);
 currentNode = currentNode.getLeftChild();
 } // end while

 // visit leftmost node, then traverse its right subtree
 if (!nodeStack.isEmpty())
 {
 BinaryNodeInterface<T> nextNode = nodeStack.pop();
 assert nextNode != null; // since nodeStack was not empty
 // before the pop
 System.out.println(nextNode.getData());
 currentNode = nextNode.getRightChild();
 } // end if
 } // end while
} // end inorderTraverse
private class InorderIterator implements Iterator<T> {
 private StackInterface<BinaryNodeInterface<T>> nodeStack;
 private BinaryNodeInterface<T> currentNode;

 public InorderIterator() {
 nodeStack = new LinkedStack<BinaryNodeInterface<T>>();
 currentNode = root;
 } // end default constructor

 public boolean hasNext() {
 return !nodeStack.isEmpty() || (currentNode != null);
 } // end hasNext

 public T next() {
 BinaryNodeInterface<T> nextNode = null;

 // find leftmost node with no left child
 while (currentNode != null) {
 nodeStack.push(currentNode);
 currentNode = currentNode.getLeftChild();
 } // end while

 nextNode = nodeStack.pop();
 currentNode = nextNode;

 return nextNode;
 } // end next
} // end InorderIterator
// get leftmost node, then move to its right subtree
if (!nodeStack.isEmpty())
{
 nextNode = nodeStack.pop();
 assert nextNode != null; // since nodeStack was not empty
 // before the pop
 currentNode = nextNode.getRightChild();
}
else
 throw new NoSuchElementException();

return nextNode.getData();
} // end next

public void remove()
{
 throw new UnsupportedOperationException();
} // end remove
} // end InorderIterator
• An iterative version of preorderTraverse using stack
• An iterative version of postorderTraverse using stack
General Tree

• A node in general tree can be represented as

- Data object
- List of child nodes

• Interface

```java
import java.util.Iterator;
interface GeneralNodeInterface<T> {
    public T getData();
    public void setData(T newData);
    public boolean isLeaf();
    public Iterator<T> getChildrenIterator();
    public void addChild(GeneralNodeInterface<T> newChild);
} // end GeneralNodeInterface
```
Representing General Tree using Binary Tree
Binary Search Trees

• Search Tree
 – Organizes its data so that a search can be more efficient

• Binary search trees - Nodes contain Comparable objects

• For each node in a search tree:
 – Node’s data greater than all data in node’s left subtree
 – Node’s data less than all data in node’s right subtree
Binary Search Trees
Binary Search Trees
import java.util.Iterator;

public interface SearchTreeInterface<T extends Comparable<? super T>> extends TreeInterface<T>
{
 public boolean contains(T entry);

 public T getEntry(T entry);

 public T add(T newEntry);

 public T remove(T entry);

 public Iterator<T> getInorderIterator();
} // end SearchTreeInterface
Algorithm bstSearch(binarySearchTree, desiredObject)
 // Searches a binary search tree for a given object.
 // Returns true if the object is found.

 if (binarySearchTree is empty)
 return false
 else if (desiredObject == object in the root of binarySearchTree)
 return true
 else if (desiredObject < object in the root of binarySearchTree)
 return bstSearch(left subtree of binarySearchTree, desiredObject)
 else
 return bstSearch(right subtree of binarySearchTree, desiredObject)
public T getEntry(T entry)
{
 return findEntry(getRootNode(), entry);
} // end getEntry

private T findEntry(BinaryNodeInterface<T> rootNode, T entry)
{
 T result = null;
 if (rootNode != null)
 {
 T rootEntry = rootNode.getData();
 if (entry.equals(rootEntry))
 result = rootEntry;
 else if (entry.compareTo(rootEntry) < 0)
 result = findEntry(rootNode.getLeftChild(), entry);
 else
 result = findEntry(rootNode.getRightChild(), entry);
 } // end if
 return result;
} // end findEntry
Adding an Entry

• We cannot add it just anywhere in the tree
 – The tree must still be a binary search tree after the addition.
 – For example, we want to add the entry Chad to the following tree
Adding an Entry

(b)

- Jared
 - Brittany
 - Brett
 - Chad
 - Doug
 - Megan
 - Jim
 - Whitney
Adding an Entry

• To add Chad to the binary search tree whose root is Jared:
 – Observe that Chad is less than Jared.
 – Add Chad to Jared’s left subtree, whose root is Brittany.

• To add Chad to the binary search tree whose root is Brittany:
 – Observe that Chad is greater than Brittany.
 – Add Chad to Brittany’s right subtree, whose root is Doug.

• To add Chad to the binary search tree whose root is Doug:
 – Observe that Chad is less than Doug.
 – Since Doug has no left subtree, make Chad the left child of Doug.
Algorithm addEntry(binarySearchTree, newEntry)
// Adds a new entry to a binary search tree that is not empty.
// Returns null if newEntry did not exist already in the tree. Otherwise, returns the
// tree entry that matched and was replaced by newEntry.

result = null
if (newEntry matches the entry in the root of binarySearchTree)
{
 result = entry in the root
 Replace entry in the root with newEntry
}
else if (newEntry < entry in the root of binarySearchTree)
{
 if (the root of binarySearchTree has a left child)
 result = addEntry(left subtree of binarySearchTree, newEntry)
 else
 Give the root a left child containing newEntry
}
else // newEntry > entry in the root of binarySearchTree
{
 if (the root of binarySearchTree has a right child)
 result = addEntry(right subtree of binarySearchTree, newEntry)
 else
 Give the root a right child containing newEntry
}

return result
private T addEntry(BinaryNodeInterface<T> rootNode, T newEntry)
{
 assert rootNode != null;
 T result = null;
 int comparison = newEntry.compareTo(rootNode.getData());

 if (comparison == 0)
 {
 result = rootNode.getData();
 rootNode.setData(newEntry);
 }
 else if (comparison < 0)
 {
 if (rootNode.hasLeftChild())
 result = addEntry(rootNode.getLeftChild(), newEntry);
 else
 rootNode.setLeftChild(new BinaryNode<T>(newEntry));
 }
 else
 {
 assert comparison > 0;

 if (rootNode.hasRightChild())
 result = addEntry(rootNode.getRightChild(), newEntry);
 else
 rootNode.setRightChild(new BinaryNode<T>(newEntry));
 } // end if

 return result;
} // end addEntry
```java
public T add(T newEntry)
{
    T result = null;
    if (isEmpty())
    {
        setRootNode(new BinaryNode<T>(newEntry));
    }
    else
    {
        result = addEntry(getRootNode(), newEntry);
    }
    return result;
} // end add
```
Removing an Entry

• Three possibilities:
 – The node has no children—it is a leaf
 – The node has one child
 – The node has two children
Removing a Leaf Node

- Either the left child or the right child of its parent node P
- *Set the* appropriate child reference in node P *to* `null`
Removing a Node with One Child

• Four Possibilities
Removing a Node with Two Children

• Two possibilities:
Removing a Node ...

• Let’s find a node A that is easy to remove—it would have no more than one child
• Replace N’s entry with the entry now in A.
• We then can remove node A and still have the correct entries in the tree and the tree should still be a binary search tree
• How can we find node A?
Removing a Node ...

- Let \(e \) be the entry in node \(N \)

- We are able to delete the node that contains \(a \) and replace \(e \) with \(a \)
• Which a?
 – The largest value with no more than one child.
 – The right most node
• Algorithm

Algorithm Delete the entry e from a node N that has two children
Find the rightmost node R in N's left subtree
Replace the entry in node N with the entry that is in node R
Delete node R
• Example
 – Remove Chad
• Example
 – Remove Kathy
Recursive Algorithm

Algorithm remove(binarySearchTree, entry)
oldEntry = null
if (binarySearchTree is not empty)
{
 if (entry matches the entry in the root of binarySearchTree)
 {
 oldEntry = entry in root
 removeFromRoot(root of binarySearchTree)
 }
 else if (entry < entry in root)
 oldEntry = remove(left subtree of binarySearchTree, entry)
 else // entry > entry in root
 oldEntry = remove(right subtree of binarySearchTree, entry)
}
return oldEntry
public T remove(T entry)
{
 ReturnObject oldEntry = new ReturnObject(null);
 BinaryNodeInterface<T> newRoot = removeEntry(getRootNode(), entry,
 oldEntry);
 setRootNode(newRoot);

 return oldEntry.get();
} // end remove
private BinaryNodeInterface<T> removeEntry(BinaryNodeInterface<T> rootNode, T entry, ReturnObject oldEntry)
{
 if (rootNode != null)
 {
 T rootData = rootNode.getData();
 int comparison = entry.compareTo(rootData);

 if (comparison == 0) // entry == root entry
 {
 oldEntry.set(rootData);
 rootNode = removeFromRoot(rootNode);
 }
 else if (comparison < 0) // entry < root entry
 {
 BinaryNodeInterface<T> leftChild = rootNode.getLeftChild();
 BinaryNodeInterface<T> subtreeRoot = removeEntry(leftChild, entry, oldEntry);

 rootNode.setLeftChild(subtreeRoot);
 }
 else // entry > root entry
 {
 BinaryNodeInterface<T> rightChild = rootNode.getRightChild();
 rootNode.setRightChild(removeEntry(rightChild, entry, oldEntry));
 }
 } // end if
 } // end if
 return rootNode;
} // end removeEntry
private BinaryNodeInterface<T> removeFromRoot(BinaryNodeInterface<T> rootNode)
{
 // Case 1: rootNode has two children
 if (rootNode.hasLeftChild() && rootNode.hasRightChild())
 {
 // find node with largest entry in left subtree
 BinaryNodeInterface<T> leftSubtreeRoot = rootNode.getLeftChild();
 BinaryNodeInterface<T> largestNode = findLargest(leftSubtreeRoot);

 // replace entry in root
 rootNode.setData(largestNode.getData());

 // remove node with largest entry in left subtree
 rootNode.setLeftChild(removelargest(leftSubtreeRoot));
 } // end if

 // Case 2: rootNode has at most one child
 else if (rootNode.hasRightChild())
 rootNode = rootNode.getRightChild();
 else
 rootNode = rootNode.getLeftChild();

 // Assertion: if rootNode was a leaf, it is now null

 return rootNode;
} // end removeEntry
• **findLargest()**

```java
private BinaryTreeNodeInterface<T> findLargest(BinaryTreeNodeInterface<T> rootNode)
{
    if (rootNode.hasRightChild())
        rootNode = findLargest(rootNode.getRightChild());

    return rootNode;
} // end findLargest
```

• **removeLargest()**

```java
// Returns the root node of the revised tree.
private BinaryTreeNodeInterface<T> removeLargest(BinaryTreeNodeInterface<T> rootNode)
{
    if (rootNode.hasRightChild())
    {
        BinaryTreeNodeInterface<T> rightChild = rootNode.getRightChild();
        BinaryTreeNodeInterface<T> root = removeLargest(rightChild);
        rootNode.setRightChild(root);
    }
    else
        rootNode = rootNode.getLeftChild();

    return rootNode;
} // end removeLargest
```
Efficiency of Operations

- Tallest tree has height n if it contains n nodes
- Operations `add`, `remove`, and `getEntry` are $O(h)$
- Note different binary search trees can contain same data
Efficiency of Operations

- Tallest tree has height n if it contains n nodes
 - Search is an $O(n)$ operation
- Shortest tree is full
 - Searching full binary search tree is $O(\log n)$ operation
Efficiency of Operations

- Tallest tree has height n if it contains n nodes
 - Search is an $O(n)$ operation
- Shortest tree is full
 - Searching full binary search tree is $O(\log n)$ operation