EXPERIMENT 8

Encoders & Application to a 7-Segment
Display Driver
Depantment of Electrical & Computer Engineering

I. OBJECTIVES:

Examine encoders and their applications.

Examine the characteristics of a decimal-to-BCD priority encoder.

Design an 8-to-3 line priority encoder in schematic mode and test it on a target board.

Create a macro for a 7-segment decoder with active-HIGH outputs using VHDL.

Utilizing a created macro, design a circuit in schematic mode to display a decimal digit on a 7-
segment display.

Il. MATERIALS:

e Xilinx Vivado software, student or professional edition VV2018.2 or higher.

e IBM or compatible computer with Pentium 111 or higher, 128 M-byte RAM or more, and 8
G-byte Or larger hard drive.

e BASYS 3 Board.

I11. DISCUSSION:

As we saw in the previous experiment, a decoder identifies or detects a particular binary number
or code. Encoding is the opposite process of decoding. An encoder has a number of input lines
(up to 2n), only one of which is activated at any given time, and produces the n-bit output code
for the input selected. For example, consider an 8-to-3 encoder. When one of its eight inputs is
activated, the output will be a 3-bit binary number (code) corresponding to that input.

If two or more inputs are activated at the same time, which one of the inputs should be encoded
and reflected on the outputs? This is when priority is used in the encoder design. When multiple
inputs are activated, priority specifies which input will get selected to produce the output code.

1119

A common application of encoders is in the keyboards of calculators and computer systems to
convert key-presses to binary numbers or to codes such as BCD or ASCII.

The 8-to-3 Line Encoder with Active-LOW Inputs

The 8-t0-3 (octal-to-binary) encoder accepts eight input lines and produces a unique 3-bit output code
for each set of inputs. Table 9.1 below describes the function of this encoder. Note the active-low
inputs, as could be obtained from a keypad with normally-open contacts to ground.

s Inputs Qutputs
Ao | A1 | Ax | A3 | A | As | As | Aq 0, 0O, Oy
X | 1 1 1 1 1 1 1 0 0 0
X |0 l I I | 1 1 0 0 1
X 0 1 1 1] 1 0 1 0
X | 1 l 0 1] 1 1 0 1 1
X |1 1] 0 1 1 | | 0 0
X|1 |11]1]0]1]1 1 0 1
X |1 1 1 1 1 0 | 1 I 0
X 01 1 1 1 1 1 0 1] 1

Table 9.1 Truth Table for the Octal-to-Binary Encoder

The Decimal-to-BCD Priority Encoder

The SN54/74L.S147 and the SN54/74L.S148 are Priority Encoders. They provide priority decoding of
the inputs to ensure that only the highest order data line is encoded. Both devices have data inputs and
outputs which are active at the low logic level.

The LS147 encodes nine data lines to four-line (8-4-2-1) BCD. The implied decimal zero condition does
not require an input condition because zero is encoded when all nine data lines are at a high logic
level. Figure 9.2 is the truth-table for a decimal-to-BCD priority-encoder (such as the 74147 TTL chip).
It has nine active-low inputs representing decimal numbers 1 through 9. The encoder produces the
inverted BCD code corresponding to which of the nine inputs is activated.

Page 2|19

Inputs Outputs

AL A | Az Ay | As [Ag | Ay | Ag | Ag 0; | O] O | Op
| 1 1 1 1 1 1 1 1 1 1 1 15351
XX | X | X|IX|X|X|X]0 0 1 1 0
XX aXe | e XX e XE X 20] 0 1 1 |l
Xl | e e X e X X |40 1 1 1 0 0 0
X | X[X|X|X]| 0 1 1 1 1 0 0 1
X | X | X | X |0 1 1 1 1 1 0 1 0
X | XX |0 1 1 1 1 1 1 0 1 1
X | X0 1 1] 1 1 1 1 1 0 0
| X |10] 1 1 1 1 1 1 1 1 0 1
0 1] 1 1 1 1 1 1 1 1 1 0

Table 9.2 Truth Table for a Decimal-to-BCD Priority Encoder (74147)

Note the “don’t-cares” (Xs) in the truth table. They imply that, if two inputs are activated
simultaneously, only the highest data line is encoded. For example, if lines Al and A5 are
activated at the same time, A5 will be encoded producing the output 1010 (which is 0101
inverted, or BCD 5). That’s why it’s called a “priority” encoder. Moreover, the implied decimal
zero condition requires no inputs since zero is encoded when all nine data lines are at HIGH.
For a more detailed discussion of encoder circuits, refer to your digital textbook.

7-Segment Display

A 7-segment display is composed of seven bars (the segments; either LED or LCD) that can
be individually activated to emit light. Such a display can show digits from 0 to 9, as well as a
few letters (A, b, C, d, E, F, H, L, P, S, U, Y), a minus sign (-) and a decimal point. For a
common-cathode 7-segment LED display, the “common” input is connected to GND, and a
HIGH on any segment-input will light up that segment. For a common- anode display, the
common-input is connected to a HIGH, and a LOW on a segment- input lights the segment.
Figure 9.1 (a) and (b) show how the seven segments are arranged.

Page 3|19

7-segment

I

dplay 0 0 (L0 L0 1
o d2388
——

[]:[] |

A: — B C: £ D — E: — F —
Common Anode
\\%\'\L\'\ \'\ \'\ \\J"\\ \\
\ \

The Xilinx target board is using Common Cathode 7-segment display chips.

Page 4|19

7-Segment Decoder

7-segment decoder is not available in the symbol library of the Xilinx software, so we will
design one. We will design the decoder with active-high outputs for a common- cathode
display. The lit display segments for each digit from 0 to 9 are given in the following truth
table:

BCD to 7-Segment Decoder Driver (74LS47) Table

Decimal Inputs Outputs

Number D3 | D2 | D1 | Do a b c d e f g

0

(OS] RS

ool IR Koyl RV T EES

9

Invalid

Invalid

Invalid

Invalid

Invalid

Invalid

Table 9.3 Truth Table for a 7-Segment Decoder with Active-High Outputs

Note that the outputs of this decoder are all LOW for invalid (mv) BCD codes. Based on the
above truth table, we can derive the Boolean equations for the outputs using K-maps or Boolean
algebra:

5] 19

a =1—)3D;+52.51.59 +D35251 +B3D2Do

b =5352+525} +D;D;D, + 531)]1)9

Cc = 531)2 + 525} +I_)3Dg

d=D,D;D,+ 53521)1 +53D11_)g +53D253D9

e =D,D,D,+ 53D;1_)g

f= D2D1D0+53D25I +53D2I)0 +D3525;

g= D3D,D; + DsD,D; + DsD,D; + D3D Dy

V. PROCEDURE:

Section 1:

1. Open Xilinix Vivado and in the Xilinx-Project Navigator window, Quick start,
New Project.

2. Choose “RTL Project” and check the “Do not specify sources at this time” as we will
configure all the settings manually through the navigator from inside the project.

w

Project Type
Specify the type of project to create.

- RTL Project
You will be able to add sources, create block designs in IP Integrator, generate IP, run RTL analysis, synthesis,
implementation, design planning and analysis.

Do not specify sources at this time

Post-synthesis Project: You will be able to add sources, view device resources, run design analysis, planning and
implementation

WO Planning Project
Do not specify design sources. You will be able to view part/package resources

Imported Project
Create a Vivado project from a Synplify, XST or ISE Project File.

Example Project
Create a new Vivado project from a predefined template.

&
6|19

3. Select New Source... and the New window appears. In the New window, choose

Schematic, type your file name (such as encoder_8to3) in the File Name editor box,

click on OK, and then click on the Next button.

¢ Create Source File
Create a new source file and add it to your
project. '
File type: @ VHDL v
File name: encnder_8t03|
File location: | « =Local to Project= L
Py

4. In the Xilinx - Project Navigator window, select the following
e Category: “General Purpose”

e Family: “Artix-7”
e Package: “cpg236”
e Speed: “-1”
e Choose “xc7a35tcpg236-1” that corresponds to the board we are using.
e Then Choose Finish.
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. o
Parts | Soards

Reset All Filters

Category: Seneral Purpose ~ Package: cpg236 R Temperature: I -
Family: Artix-7 ~ Speed: -1L R
Search: xc7¥a3Sticpg et 1 match)
Part O Pin Count Available 10OBs LUT Elements FlipFlops Block RAMs Ultra RAMs DSPs GE
®*CT7a35ticpg236-1L 236 106 20800 41600 50 o f=le] =2
< >
Y N

Page 7|19

5. The Define Module Window that will appear, we will choose the input and output
labels for the gates under investigation in this experiment.

Define Module

Define a module and specify 10 Ports to add to your source file.

For each port specified:
MSEB and LSB values will be ignored unless its Bus column is checked. '

Ports with blank names will not be written.

Module Definition
Entity name: encoder_8to3

Architecture name: |Behavioral

0 Port Definitions

+ =t

PotMame Direction Bus MSB L3SB
din in W | 7]

dout out WY 0
P

6. In the “encoder_8to3.vhd” created file, type the gates equivalent VHDL code as
follows and then save the file.

Page 8] 19

entity encoder Bto3 is
Bort { din : in STD LOGIC VECTOR (7 downto O):
dout : ocut STD LOGIC VECTOR (2 downto 0)):

s

37 end encoder 8to3:
39 architecture Behavioral of encoder 8to3 is
i1 kegin

dout <= "000" when (din="10000000") =lse
"001" when (din="01000000") =lse
"010" when (din="00100000") =lse
"011" when (din="00010000") =lse
"100" when (din="00001000") =lse
"101" when (din="00000100") =lse
"110" when (din="00000010") e=lae
"111v;

s

X5

end Behavioral;

5 DO TR B %

[

7. Next, we need to add To add a constraint file with the”.xdc” extension, as following:
Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then
“OK” followed by “Finish”.

Add Sources

A ’
Vl\{“_\lgp This guides you through the process of adding and creating sources for your project
= Add or create constraints
Add or create design sources
Add or create simulation sources
-
&2 XILINX.
P

8. Then, we need to get a template xdc file that is going to be edited according to the
different experiments. Google “basys 3 xdc file” and choose the “xilinix” link that

Page 9] 19

appears (https://www.xilinx.com/support/documentation/university/Vivado-
Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3 _Master.xdc).
Copy the whole file and paste it into the “port_assign.xdc” that you have just created
in the last step. Then uncomment and edit the input Switches and the output LEDs as
in the next step.

set property PRCERGE PIN V17 [get ports {din[0]}]

set property IOSTRNDRRD LVCMOS33 [get ports [din[0]]]
set property PACERGE PIN V1é [get ports {din[l]]}]

set property IOSTANDRED LWVCMOS33 [get ports {din[l1]]}]
set property PACERGE PIN Wlé [get ports {din[2]]]

set property IOSTANDARD LWCMOS33 [get ports {din[2]]]
set property PRCERGE PIN W17 [get ports {din[3]}]

set property IOSTANDRRD LVCMOS33 [get ports {din[3]}]
set property PRCERGE PIN W15 [get ports {din[4]}]

set property IOSTRNDRRD LVCMOS33 [get ports [din[4]]]
set property PACERGE PIN V15 [get ports {din[53]}]

set property IOSTANDRRD LWCMOS33 [get ports [din[5]]
set property PACERGE PIN W14 [get ports {[din[&]]]

set property IOSTANDARD LWVCMOS33 [get ports {din[&]]]
set property PRCERGE PIN W13 [get ports {din[7]}]

set property IOSTANDRRD LVCMOS33 [get ports {din[7]}]

[—

E get property PRCERGE PIN Ulé [get ports [dout[0]]]
: set property IOSTRNDARD LVCMOS33 [get ports {dout[0]}]
E set property PACKRGE PIN E13 [get ports {doutc[l]}]
. set property IOSTRNDARD LWCMOS33 [get ports {[dout[l]}]
E get property PRCERGE PIN UlS [get ports [dout[2]]]
. get property IOSTANDARD LWCMOS33 [get ports [dout[2]]]

9. From the tool tab choose the play button and then “Run Implementation”. Select
“Number of jobs” =1 and then press OK.

10. The implementation errors window will appear if any or the successfully completed
window. From this window select “Generate Bitstream” and then OK. This will make
the software generate “.bin” file to be used in programing the hardware BAYAS 3.

Page 10119

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

Implementation Completed *

o Implementation successfully completed.
Hext

Open Implemented Design
@ Generate Bitstream

View Reports

Don't show this dialog again

11.

o Bitstream Generation successfully completed.
Next

Open Implemented Design
View Reports
® Open Hardware Manager

Generate Memory Configuration File

Dont show this dialog again

ST

The next window will appear in which choose “Open Hardware Manger”, connect
the Hardware Kit to the USB port and then press OK.

Page 11119

12. From the window appears, select the “.bin” file from the Project you

create by browsing for the generated “.bit file” under the “.runs” folder and program
the board then press OK.

13. Check your board and fill the truth table,

Input Output
ding | diny |diny |ding |ding |dins |ding |dins dout, | dout; |dout,
X | X | X | X X | X | X | X |

H | H H| H| H| H | H

L H|H| H H H| H|H

X | L | H| H H| H| H| H

X | X | L | H H| H H|H

X | X | X | L H| H| H|H

X | X | X | X | L | H| H|H

X | X | X | X | X | L | H | H

X | X | X | X | X | X | L | H

X X | X | X | X | X X L

14. List your comments from last step

Checked by Date

Page 12|19

’

Section 2:

1. Follow section 1 from step 1 to 4 but use a different project and source name (such as
deco_7seq).

2. The Define Module Window that will appear, we will choose the input and output labels
for the gates under investigation in this experiment.

Define Module ot

Define a module and specify /O Ports to add to your source file.

For each port specified:
MSEB and LSB values will be ignored unless its Bus column is checked. '
Parts with blank names will not be written.

Module Definition
Entity name: RR

Architecture name: Behavioral

'O Port Definitions

+ - 1t
PortMame Direction Bus MSB LSB

| in W 3 0

a out g |
b out hd

c out -

d out A

e out b

f out hd

g out -

)
(?) oK Cancel

3. In the “encoder_8t03.vhd” created file, type the gates equivalent VHDL code as follows
and then save the file.

Page 13|19

]

entity dec 7seq ia

Fore (I : in 5TD LOGIC VECTOR (3 downto 0);
Anode Activate : out 5TD_LOGIC VECTOR (3 downto 0);
: out STD LOGIC;
: out STD_LOGIC;
: out STD_LOGIC;
+ out STD LOGIC;
: out STD LOGIC;
: out STD_LOGIC;
g & out STD_LOGIC;
dp : out STD LOGIC);
end dec_Tseq;

MmO o B

architecture Behavioral of dec Taeg i3

begin
dp <= '0";
Anode Activate <= "1110";

F oo M1
. H

i o= I 0
u %

a <=l0T{(not I(2) and not I(0)) or (I(1})) or (I{(2) and I{0)) or (I(3)));

b¢= NOT ({not I(2)) or (not I(1) and not I(0)) cr (I(1) and I{0}));

¢ <= NOT({not I(1)) or I40) or I{2)):

d <=N0T (({nct I(2) and not (I(0})) or (mot I{2) and I{1)) or {(I(2) and not I(1) and I{0}) or (I{1) and not I{0)}) cr (I{3)});
e <= N0T{(not I(2) &nd not (I{0))) or (I(1) and not (I(0))));

f<=00T{{not I{1) and not (I(0))) or { I{2) and not (I{1))) or (I{2) and not (I{0))) or I{3));

g <=N0T{{not I(2) and (I{1)})) or (I{2) and not (I(1))) oz I{3) or (I{2) and mot {I{0)})):

end Behavioral;

4. Start a test bench as follows

Page 14|19

L

| I = L 5 Y <Y

1 o LA s

[x] 1 oy A =

[t T % T L % Y % T 6
0o

L
[

%]

O

[= T 5 B

Lol
(= T B =

[T D R 5 B =)

LIBRAEY ieee;
USE ieee.std logic 1164.RI1L;

ENTITY test_b IS
END test_b;

CHITECTURE bench OF test_b IS5

COMPONENT dec_Tseq

BORT {
I in STD _LOGIC VECTOR (3 downto 0);
& : out STD_LOGIC;
B : oput STD LOGIC;
c : out STD_LOGIC:
d : out STD_LOGIC:
e cut STD _LOGIC:
f out STD LOGIC;
g : out STD_LOGIC;

dp : out STD LOGIC):
END COMPONENT:

3ignal I std logic wector(3 downtc 0):= "000O" ;
gignal a : std leogic ;
gignal b : std logics
gignal c : std logics
gignal 4 : std logics
signal = std logics
3ignal £ std logicy
gignal g : std logics

gignal dp : std logics
BEGIN
uut: dec_Tseg PORT MAFP (

= I,
= a,

wory o0 Fom A
W
B

stim proc: process
begin
wait for 100 ns;

I <= "0000"; -- check 0 and 0 =1
wait for 10 ns;
I <= "0001"; -- check 0 and 0 = 1

wait for 10 ns;

Page 15119

! I <= "0010"r -- check 0 and 0 = 1
wait for 10 ns;

I <= "0011"; -- check 0 and 0 = 1
wait;

1 & LA

end process;
END;

AR LA A A A

[V]

5. What is your observation ?

6. Next, we need to add To add a constraint file with the”.xdc” extension, as following:
Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File” and enter the file name “lab_2” then
“OK” followed by “Finish”.

7. Then, we need to get a template xdc file that is going to be edited according to the different
experiments. Google “basys 3 xdc file” and choose the “xilinix” link that appears
(https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL -
Design/2015x/Basys3/Supporting%20Material/Basys3 Master.xdc). Copy the whole file
and paste it into the “port_assign.xdc” that you have just created in the last step. Then
uncomment and edit the input Switches and the output LEDSs as in the next step.

. set property PRCERGE PIN V17 [get ports {I[0]}]
' set property IOSTANDARRD LWVCMOS33 [get ports [I[0]}]
get property PRCERGE PIN V16 [get portz {I[1]}]

get property IOSTANDARD LWCMOS3I3 [get ports [I[1]}]
 2et property PACKRGE PIN W1é [get ports [I[2]]]
set property IOSTANDARD LWCMOS33 [get ports [I[2]]]
E gset property PRCERGE_PIN W17 [get ports [I[3]1]
. set property IOSTANDRRD LVCMO3I33 [get ports {I[3]}]

Page 16|19

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

(B B S |

i [T ¢ T e T ¢ S F R]
[=Y = I ¥

[}

[N N T ¥ T
o LR = L

[¥s)
1

o =

set property PACERGE PIN W7
set property IOSTANDRED
set property PRCERGE PIN Wo
set property IOSTANDRRD
set property PRCERGE PIN US
set property IOSTANDLRD
set property PACERGE PIN Vi
set property IOSTANDRED
set property PACERGE PIN US
set property IOSTANDRED
set property PRCERGE _PIN V35
set property IOSTANDRRD
set property PRCERGE PIN U7
set property IOSTANDRRD

sget property PACERGE PIN W7
set property IOSTANDRED

set property PACERGE PIN U2
set property IOSTANDRRD
set property PRCERGE PIN U4
set property IOSTANDRRD
set property PRCERGE PIN V4
get property IOSTANDRED
set property PACERGE PIN W4
set property IOSTANDRED

[get ports [a]]
LVCMOS33 [get ports
[get ports {b}]
LVCMOS33 [get ports
[get ports {c}]
LVCMOS33 [get ports
[get ports [d]]
LVCMOS33 [get ports
[get ports [e]l]
LVCMOS33 [get ports
[get ports {L}]
LVCMOS33 [get ports

[get ports {gl]
LVCMOS33 [get ports

[get_ports {dp]l]
LVCMOS33 [get ports

[get ports [Ancde Activate[0]]]

{al}]

fb}]

fcH]

{d}]

{e}]

{f}]

fat]

fdpl]

LVCMOS33 [get ports [Rnode Retivate[0]}]

[get ports {Enode Rctivate[l]}]

LVCMOS533 [get ports [Rnode Retivate[l]}]

[get ports [Inode Rctivate[2]]]

LWVCMOS33 [get _ports [Rnode Rctivate[2]}]

[get ports [Ancde Rctivate[3]]]

LWVCMOS33 [get ports [Rnode Rctivate[3]}]

8. From the tool tab choose the play button and then “Run Implementation”. Select "Number
of jobs” =1 and then press OK.

9.

The implementation errors window will appear if any or the successfully completed
window. From this window select “Generate Bitstream” and then OK. This will make the
software generate “.bin” file to be used in programing the hardware BAYAS 3.

Implementation Completed

o Implementation successfully completed.

HNext

Cpen Implemented Design

=

@ Generate Bitstream

View Reports

Dont show this dialog again

Page 17|19

10. The next window will appear in which choose “Open Hardware Manger”, connect the
Hardware Kit to the USB port and then press OK.

o Bitstream Generation successfully completed.
Next

DOpen Implemented Design
View Reports
* Open Hardware Manager

izenerate Memory Configuration File

Dont show this dialog again

ST

11. From the window appears, select the “.bin” file from the Project you create by
browsing for the generated “.bit file” under the “.runs” folder and program the board then
press OK.

12. Check your board for the 7-segment display.

Checked by Date

Page 18|19

V. Questions:

1.) Priority encoders are much more common than non-priority encoders. What do you think the
reasons are for that?

2.) Which bit has the highest priority? loor 19?7 (Why is there no EO input in the decimal-to-BCD
encoder?

3.) Ifacommon-anode 7-segment is used, what modifications must you make on the project design
in Section I11? If you have more than one, list them all.

4.) Name two applications for encoders.

19 | 19

