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Vol. 14, No. 3, November, 1967 

Printed in U.S.A. 

GAMES WITH INCOMPLETE INFORMATION PLAYED 
BY "BAYESIAN" PLAYERS, I-III 

Part I. The Basic Model*tl 

JOHN C. HARSANYI 

University of California, Berkeley 

The paper develops a new theory for the analysis of games with incomplete 
information where the players are uncertain about some important parameters 
of the game situation, such as the payoff functions, the strategies available to 
various players, the information other players have about the game, etc. How- 
ever, each player has a subjective probability distribution over the alternative 
possibilities. 

In most of the paper it is assumed that these probability distributions enter- 
tained by the different players are mutually "consistent", in the sense that they 
can be regarded as conditional probability distributions derived from a certain 
"basic probability distribution" over the parameters unknown to the various 
players. But later the theory is extended also to cases where the different 
players' subjective probability distributions fail to satisfy this consistency 
assumption. 

In cases where the consistency assumption holds, the original game can be 
replaced by a game where nature first conducts a lottery in accordance with 
the basic probablity distribution, and the outcome of this lottery will decide 
which particular subgame will be played, i.e., what the actual values of the rele- 
vant parameters will be in the game. Yet, each player will receive only partial 
information about the outcome of the lottery, and about the values of these 
parameters. However, every player will know the "basic probability distribu- 
tion" governing the lottery. Thus, technically, the resulting game will be a 
game with complete information. It is called the Bayes-equivalent of the 
original game. Part I of the paper describes the basic model and discusses vari- 
ous intuitive interpretations for the latter. Part II shows that the Nash equi- 
librium points of the Bayes-equivalent game yield "Bayesian equilibrium 
points" for the original game. Finally, Part III considers the main properties of 
the "basic probablity distribution". 

* Received June 1965, revised June 1966, accepted August 1966, and revised June 1967. 
t Parts II and III of "Games with Incomplete Information Played by 'Bayesian' Players" 

will appear in subsequent issues of Management Science: Theory. 
1 The original version of this paper was read at the Fifth Princeton Conference on Game 

Theory, in April, 1965. The present revised version has greatly benefitted from personal 
discussions with Professors Michael Maschler and Robert J. Aumann, of the Hebrew Uni- 
versity, Jerusalem; with Dr. Reinhard Selten, of the Johann Wolfgang Goethe University, 
Frankfurt am Main; and with the other participants of the International Game Theory 
Workshop held at the Hebrew University in Jerusalem, in October-November 1965. I am 
indebted to Dr. Maschler also for very helpful detailed comments on my manuscript. 

This research was supported by Grant No. GS-722 of the National Science Foundation as 
well as by a grant from the Ford Foundation to the Graduate School of Business Administra- 
tion, University of California. Both of these grants were administered through the Center 
for Research in Management Science, University of California, Berkeley. Further support 
has been received from the Center for Advanced Study in the Behavioral Sciences, Stanford. 
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Glossary of Mathematical Notation 

I-game ... A game with incomplete information. 
C-game ... A game with complete information. 
G ... The I-game originally given to us. 
G* ... The Bayesian game equivalent to G. (G* is a C-game.) 
G** The Selten game equivalent to G and to G*. (G** is likewise a C-game.) 
DI(G), I(G*), DI(G**) ... The normal form of G, G* and G** respectively. 
S(G), 8(G*) * The semi-normal form of G and G* respectively. 
si ... Some strategy (pure or mixed) of player i, with i = 1,* , n. 
Si = { sis ... Player i's strategy space. 
ci ... Player i's attribute vector (or information vector). 
Ci = {ci} ... The range space of vector ci . 
c = (c], *. * , cn) * The vector obtained by combining the n vectors c1, ** , 

into one vector. 
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C = {c} ... The range space of vector c. 
ci (cl, ... , cite , ci+, l ., c.) ... The vector obtained from -vector c by 

omitting subvector ci . 
C'= I cil} ... The range space of vector ci. 
xi ... Player i's payoff (expressed in utility units). 
Xi = Ui(sl , s.) Vi(Sl * s ; cl , cn) * Player i's payoff func- 

tion. 
Pi(C i***v... c, ) C1 * * , cn) = PN(ci) = Ri(c' I cu) ... The subjective prob- 

ability distribution entertained by player i. 
R*= R*(cl v * cn) = R*(c) * The basic probability distribution of the 

game. 
Ri* = R*(ci, ... , ci , , cn I c) = R* (ci I ci) * The conditional 

probability distribution obtained from R* for a given value of vector ci. 
ki ... The number of different values that player i's attribute vector ci can take 

in the game (in cases where this number is finite). 
K = Dn=, ki * The number of players in the Selten game G** (when this 

number is finite). 
Si* ... A normalized strategy of player i. (It is a function from the range space 

Ci of player i's attribute vector ci, to his strategy space Si .) 
Si* I *J *... The set of all normalized strategies si* available to player i. 
8 ... The expected-value operator. 
F (x i) = Wi*, (i *, ... Player i's normalized payoff function, stating his 

unconditional payoff expectation. 
9(X I ci) = Zi(sl*, ... , n* I ci) ... Player i's semi-normalized payoff function, 

stating his conditional payoff expectation for a given value of his attribute 
vector ci . 

D ... A cylinder set, defined by the condition D D1D X* ... X Dn, where 
DC,**, On = Cn. 

G(D) - * * For a given decomposable game G or G*, G(D) denotes the component 
game played in all cases where the vector c lies in cylinder D. D is called the 
defining cylinder of the component game G(D). 

Special Notation in Certain Sections 

In section 3 (Part I): 

aoi denotes a vector consisting of those parameters of player i's payoff function 
Ui which (in player j's opinion) are unknown to all n players. 

aki denotes a vector consisting of those parameters of the function Ui which (in 
j's opinion) are unknown to some of the players but are known to player k. 

ao0 (a01, . * , aon) is a vector summarizing all information that (in j's opinion) 
none of the players have about the functions Us, * , Un . 

ak = (aki, . * * , akn) is a vector summarizing all information that (in j's opinion) 
player k has about the functions U1, * *, Un, except for the information that 
(in j's opinion) all n players have about these functions. 

bi is a vector consisting of all those parameters of player i's subjective probability 
distribution Pi which (in player j's opinion) are unknown to some or all of 
the players k - i. 
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In terms of these notations, player i's information vector (or attribute vector) 
ci can be defined as 

c, = (ai , bi). 
Vi* denotes player i's payoff function before vector ao has been integrated out. 

After elimination of vector ao the symbol VT is used to denote player i's payoff 
function. 

In sections 9-10 (Part II): 

a and a' denote the two possible values of player I's attribute vector cl . 
b' and b2 denote the two possible values of player 2's attribute vector c2 . 
rim = R*(c, = ak and c2, bm) denotes the probability mass function correspond- 

ing to the basic probability distribution Rf. 
Pkm = rkm/(rkn + ri,) and qkm =rm!(rim + r2m) denote the corresponding 

conditional probability mass functions. 
yl and y2 denote player l's two pure strategies. 
z' and z' denote player 2's two pure strategies. 
ynt =(yn yt) denotes a normalized pure strategy for player 1, requiring the use 

of strategy yn if cl = a', and requiring the use of strategy yt if c, a2. 

z = (zU, zv) denotes a normalized pure strategy for player 2, requiring the use 
of strategy z' if c2 = b', and requiring the use of strategy zv if c2 = b'. 

In section 11 (Part II): 

a' and a2 denote the two possible values that either player's attribute vector ci 
can take. 

rk m R*(c = ak and c2 = a'). 
pkm and qkm have the same meaning as in sections 9-10. 
yie denotes player i's payoff demand. 
yi denotes player i's gross payoff. 
xi denotes player i's net payoff. 
xi* denotes player i's net payoff in the case (cl al, c2 = a2). 
xi denotes player i's net payoff in the case (cl a , c2 = a'). 

In section 13 (Part III): 

a, 3, -y, 5 denote specific values of vector c. 
ai hi f -yi y i denote specific values of vector ci. 
a, S. ', b denote specific values of vector c', etc. 
ri(1y' -yi) = Ri(c' - 'y I c = -Yi) denotes the probability mass function cor- 

responding to player i's subjective probability distribution Ri (when Ri is a 
discrete distribution). 

r*(Qy) = R*(c = -y) denotes the probability mass function corresponding to the 
basic probability distribution R* (when Ret is a discrete distribution). 
= {rI} denotes the set of all admissible probability mass functions r*. 

E denotes a similarity class, i.e., a set of nonnull points c = a, c = 3, * similar 
to one another (in the sense defined in Section 13). 
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In section 16 (Part III): 

R(i) denotes the basic probability distribution R* as assessed by player i(i = I, 
,n). 

R*' denotes a given player's (player j's) revised estimate of the basic probability 
distribution R*. 

c/i = (ci, di) denotes player j's revised definition of player i's attribute vector 
ci. (It is in general a larger vector than the vector ci originally assumed by 
player j.) 

R'i denotes playerj's revised estimate of player i's subjective probability distribu- 
tion RX . 

Following von Neumann and Morgenstern [7, p. 30], we distinguish between 
games with complete information, to be sometimes briefly called C-games in this 
paper, and games with incomplete information, to be called I-games. The latter 
differ from the former in the fact that some or all of the players lack full informa- 
tion about the "rules" of the game, or equivalently about its normal form (or 
about its extensive form). For example, they may lack full information about 
other players' or even their own payoff functions, about the physical facilities 
and strategies available to other players or even to themselves, about the amount 
of information the other players have about various aspects of the game situa- 
tion, etc. 

In our own view it has been a major analytical deficiency of existing game 
theory that it has been almost completely restricted to C-games, in spite of the 
fact that in many real-life economic, political, military, and other social situa- 
tions the participants often lack full information about some important aspects 
of the "game" they are playing.2 

It seems to me that the basic reason why the theory of games with incomplete 
information has made so little progress so far lies in the fact that these games 
give rise, or at least appear to give rise, to an infinite regress in reciprocal expec- 
tations on the part of the players, [3, pp. 30-32]. For example, let us consider any 
two-person game in which the players do not know each other's payoff functions. 
(To simplify our discussion I shall assume that each player knows his own payoff 
function. If we made the opposite assumption, then we would have to introduce 
even more complicated sequences of reciprocal expectations.) 

In such a game player l's strategy choice will depend on what he expects (or 
believes) to be player 2's payoff function U2, as the nature of the latter will be 
an important determinant of player 2's behavior in the game. This expectation 

2 The distinction between games with complete and incomplete information (between C- 
games and I-games) must not be confused with that between games with perfect and imper- 
feet information. By common terminological convention, the first distinction always refers 
to the amount of information the players have about the rules of the game, while the second 
refers to the amount of information they have about the other players' and their own previ- 
ous moves (and about previous chance moves). Unlike games with incomplete information, 
those with imperfect information have been extensively discussed in the literature. 
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about U2 may be called player 1's first-order expectation. But his strategy choice 
will also depend on what he expects to be player 2's first-order expectation about 
his own (player l's) payoff function U1. This may be called player l's second- 
order expectation, as it is an expectation concerning a first-order expectation. 
Indeed, player l's strategy choice will also depend on what he expects to be 
player 2's second-order expectation-that is, on what player 1 thinks that player 
2 thinks that player 1 thinks about player 2's payoff function U2 . This we may 
call player l's third-order expectation-and so on ad infinitum. Likewise, player 
2's strategy choice will depend on an infinite sequence consisting of his first- 
order, second-order, third-order, etc., expectations concerning the payoff func- 
tions U1 and U2. We shall call any model of this kind a sequential-expectations 
model for games with incomplete information. 

If we follow the Bayesian approach and represent the players' expectations or 
beliefs by subjective probablity distributions, then player l's first-order expecta- 
tion will have the nature of a subjective probablity distribution P11( U2) over all 
alternative payoff functions U2 that player 2 may possibly have. Likewise, player 
2's first-order expectation will be a subjective probablity distribution P21(Ul) 
over all alternative payoff functions Ui that player 1 may possibly have. On the 
other hand, player l's second-order expectation will be a subjective probability 
distribution P12(P21) over all alternative first-order subjective probability distri- 
butions P21 that player 2 may possibly choose, etc. More generally, the kth-order 
expectation (k > 1) of either player i will be a subjective probability distribution 
p k (pk-) over all alternative (k - 1)th-order subjective probability distribu- 
tions Pok' that the other player j may possibly entertain.3 

In the case of n-person I-games the situation is, of course, even more compli- 
cated. Even if we take the simpler case in which the players know at least their 
own payoff functions, each player in general will have to form expectations about 
the payoff functions of the other (n - 1) players, which means forming (n - 1) 
different first-order expectations. He will also have to form expectations about 
the (n - 1) first-order expectations entertained by each of the other (n - 1) 
players, which means forming (n - 1)2 second-order expectations, etc. 

The purpose of this paper is to suggest an alternative approach to the analysis 
of games with incomplete information. This approach will be based on construct- 
ing, for any given I-game G, some C-game G* (or possibly several different C- 
games G*) game-theoretically equivalent to G. By this means we shall reduce the 
analysis of I-games to the analysis of certain C-games G*; so that the problem of 

I Probability distributions over some space of payoff functions or of probability distribu- 
tions, and more generally probability distributions over function spaces, involve certain 
technical mathematical difficulties [5, pp. 355-357]. However, as Aumann has shown [1] and 
[2], these difficulties can be overcome. But even if we succeed in defining the relevant higher- 
order probability distributions in a mathematically admissible way, the fact remains that 
the resulting model-like all models based on the sequential-expectations approach-will be 
extremely complicated and cumbersome. The main purpose of this paper is to describe an 
alternative approach to the analysis of games with incomplete information, which com- 
pletely avoids the difficulties associated with sequences of higher and higher-order recipro- 
cal expectations. 
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such sequences of higher and higher-order reciprocal expectations will simply not 
arise. 

As we have seen, if we use the Bayesian approach, then the sequential-expecta- 
tions model for any given I-game G will have to be analyzed in terms of infinite 
sequences of higher and higher-order subjective probability distributions, i.e., 
subjective probability distributions over subjective probablity distributions. In 
contrast, under our own model, it will be possible to analyze any given I-game G 
in terms of one unique probability distribution R* (as well as certain conditional 
probablity distributions derived from R*). 

For example, consider a two-person non-zero-sum game G representing price 
competition between two duopolist competitiors where neither player has precise 
information about the cost functions and the financial resources of the other 
player. This, of course, means that neither player i will know the true payoff 
function Uj of the other player j, because he will be unable to predict the profit 
(or the loss) that the other player will make with any given choice of strategies 
(i.e., price and output polices) sl and S2 by the two players. 

To make this example more realistic, we may also assume that each player has 
some information about the other player's cost functions and financial resources 
(which may be represented, e.g., by a subjective probability distribution over the 
relevant variables); but that each player i lacks exact information about how 
much the other player j actually knows about player i's cost structure and finan- 
cial position. 

Under these assumptions this game G will be obviously an I-game, and it is 
easy to visualize the complicated sequences of reciprocal expectations (or of sub- 
jective probablity distributions) we would have to postulate if we tried to analyze 
this game in terms of the sequential-expectations approach. 

In contrast, the new approach we shall describe in this paper will enable us to 
reduce this I-game G to an equivalent C-game G* involving four random events 
(i.e., chance moves) el, e2 , fi, and f2, assumed to occur before the two players 
choose their strategies si and S2 . The random event ei(i = 1, 2) will determine 
player i's cost functions and the size of his financial resources; and so will com- 
pletely determine his payoff function U1 in the game. On the other hand, the 
random event fi will determine the amount of information that player i will ob- 
tain about the cost functions and the financial resources of the other player 
j(j = 1, 2 and # i), and will thereby determine the actual amount of information4 
that player i will have about player j's payoff function Uj . 

Both players will be assumed to know the joint probability distribution 
R*(ei, e2 , f, ) f2) of these four random events.5 But, e.g., player 1 will know the 
actual outcomes of these random events only in the case of e1 and fl , whereas 

4 In terms of the terminology we shall later introduce, the variables determined by the 
random events e and fs will constitute the random vector ci (i = 1, 2), which will be called 
player i's information vector or attribute vector, and which will be assumed to determine 
player i's "type" in the game (cf. the third paragraph below). 

6 For justification of this assumption, see sections 4 and 5 below, as well as Part III of 
this paper. 
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player 2 will know the actual outcomes only in the case of e2 andf2 . (In our model 
this last assumption will represent the facts that each player will know only his 
own cost functions and financial resources but will not know those of his op- 
ponent; and that he will, of course, know how much information he himself has 
about the opponent but will not know exactly how much information the op- 
ponent will have about him.) 

As in this new game G* the players are assumed to know the probability distri- 
bution R* (ei, e2 , fi , f2), this game G* will be a C-game. To be sure, player 1 will 
have no information about the outcomes of the chance moves e2 and f2 , whereas 
player 2 will have no information about the outcomes of the chance moves el 
and fi . But these facts will not make G* a game with "incomplete" information 
but will make it only a game with "imperfect" information (cf. Footnote 2 
above). Thus, our approach will basically amount to replacing a game G involving 
incomplete information, by a new game G* which involves complete but imperfect 
information, yet which is, as we shall argue, essentially equivalent to G from a 
game-theoretical point of view (see section 5 below). 

As we shall see, this C-game G* which we shall use in the analysis of a given 
I-game G will also admit of an alternative intuitive interpretation. Instead of 
assuming that certain important attributes of the players are determined by some 
hypothetical random events at the beginning of the game, we may rather assume 
that the players themselves are drawn at random from certain hypothetical popu- 
lations containing a mixture of individuals of different "types", characterized by 
different attribute vectors (i.e., by different combinations of the relevant at- 
tributes). For instance, in our duopoly example we may assume that each player 
i(i = 1, 2) is drawn from some hypothetical population Hi containing individuals 
of different "types," each possible "type" of player i being characterized by a 
different attribute vector ct. i.e., by a different combination of production costs, 
financial resources, and states of information. Each player i will know his own 
type or attribute vector ci but will be, in general, ignorant of his opponent's. 
On the other hand, both players will again be assumed to know the joint prob- 
ability distribution R*(ci, c2) governing the selection of players 1 and 2 of differ- 
ent possible types cl and c2 from the two hypothetical populations ll, and 112 . 

It may be noted, however, that in analyzing a given I-game C, construction 
of an equivalent C-game G* is only a partial answer to our analytical problem, 
because we are still left with the task of defining a suitable solution concept for 
this C-game G* itself, which may be a matter of some difficulty. This is so because 
in many cases the C-game G* we shall obtain in this way will be a C-game of 
unfamiliar form, for which no solution concept has been suggested yet in the 
game-theoretical literature.6 Yet, since G* will always be a game with complete 
information, its analysis and the problem of defining a suitable solution concept 
for it, will be at least amenable to the standard methods of modern game theory. 
We shall show in some examples how one actually can define appropriate solution 
concepts for such C-games G*. 

6 More particularly, this game G* will have the nature of a game with delayed commitment 
(see section 11 in Part II of this paper). 



GAMES WITH INCOMPLETE INFORMATION 167 

2. 

Our analysis of I-games will be based on the assumption that, in dealing with 
incomplete information, every player i will use the Bayesian approach. That is, 
he will assign a subjective joint probability distribution Pi to all variables unknown 
to him-or at least to all unknown independent variables, i.e., to all variables not 
depending on the players' own strategy choices. Once this has been done he will 
try to maximize the mathematical expectation of his own payoff xi in terms of 
this probability distribution p.7 This assumption will be called the Bayesian 
hypothesis. 

If incomplete information is interpreted as lack of full information by the 
players about the normal form of the game, then such incomplete information 
can arise in three main ways. 

1. The players may not know the physical outcome function Y of the game, 
which specifies the physical outcome y = Y(si, *** , sn) produced by each 
strategy n-tuple s = (st, - * , s, e) available to the players. 

2. The players may not know their own or some other players' utility functions 
Xi, which specify the utility payoff xi = Xi(y) that a given player i derives 
from every possible physical outcome y.8 

3. The players may not know their own or some other players' strategy spabes 
Si, i.e., the set of all strategies si (both pure and mixed) available to various 
players i. 

All other cases of incomplete information can be reduced to these three basic 
cases-indeed sometimes this can be done in two or more different (but essen- 
tially equivalent) ways. For example, incomplete information may arise by some 
players ignorance about the amount or the quality of physical resources (equip- 
ment, raw materials, etc.) available to some other players (or to themselves). 
This situation can be equally interpreted either as ignorance about the physical 
outcome function of the game (case 1), or as ignorance about the strategies avail- 
able to various players (case 3). Which of the two interpretations we have to 
use will depend on how we choose to define the "strategies" of the players in 
question. For instance, suppose that in a military engagement our own side does 
not know the number of fire arms of a given quality available to the other side. 

7A subjective probability distribution PT entertained by a given player i is defined in 
terms of his own choice behavior, cf. [6]. In contrast, an objective probability distribution 
P* is defined in terms of the long-run frequencies of the relevant events (presumably as 
established by an independent observer, say, the umpire of the game). It is often convenient 
to regard the subjective probabilities used by a given player i as being his personal estimates 
of the corresponding objective probabilities or frequencies unknown to him. 

8 If the physical outcome y is simply a vector of money payoffs y,, , y, to the n players 
then we can usually assume that any player i's utility payoff xi = Xi(yi) is a (strictly 
increasing) function of his money payoff ys and that all players will know this. However, 
the other players j may not know the specific mathematical form of player i's utility func- 
tion for money, Xi. In other words, even though they may know player i's ordinal utility 
function, they may not know his cardinal utility function. That is to say, they may not know 
how much risk he would be willing to take in order to increase his money payoff y X by given 
amounts. 
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This can be interpreted as inability on our part to predict the physical outcome 
(i.e., the amount of destruction) resulting from alternative strategies of the 
opponent, where any given "strategy" of his is defined as firing a given percentage 
of his fire arms (case 1). But it can also be interpreted as inability to decide 
whether certain strategies are available to the opponent at all, where now any 
given "strategy" of his is defined as firing a specified number of fire arms (case 3). 

Incomplete information can also take the form that a given player i does not 
know whether another player j does or does not have information about the 
occurrence or non-occurrence of some specified event e. Such a situation will al- 
ways come under case 3. This is so because in a situation of this kind, from a game- 
theoretical point of view, the crucial fact is player i's inability to decide whether 
player j is in a position to use any strategy s i involving one course of action in 
case event e does occur, and another course of action in case event e does not 
occur. That is, the situation will essentially amount to ignorance by player i about 
the availability of certain strategies s? to player j. 

Going back to the three main cases listed above, cases 1 and 2 are both special 
cases of ignorance by the players about their own or some other players' payoff 
functions Us = Xi( Y) specifying the utility payoff xi- Ui(si, * * , so) a given 
player i obtains if the n players use alternative strategy n-tuples s = (si, .., 

Sn) . 

Indeed, case 3 can also be reduced to this general case. This is so because the 
assumption that a given strategy si = si0 is not available to player i is equivalent, 
from a game-theoretical point of view, to the assumption that player i will never 
actually use strategy s'0 (even though it would be physically available to him) 
because by using sP he would always obtain some extremely low (i.e., highly 

0 negative) payoffs xi = Ui(si, *, si?, ***, sn), whatever strategies s * 

Si-i I Si+1 , * * * , Sn the other players 1, * * * , i- 1, i + 1, * * * , n may be using. 
Accordingly, let Sit) (j = 1 or j 5 1) denote the largest set of strategies si 

which in player j's opinion may be conceivably included in player i's strategy 
space Si. Let 8(0) denote player i's "true" strategy space. Then, for the purposes 
of our analysis, we shall define player i's strategy space Si as 

(2.1) s k = U =0 S. 

We lose no generality by assuming that this set Si as defined by (2.1) is known 
to all players because any lack of information on the part of some player j about 
this set Si can be represented within our model as lack of information about the 
numerical values that player i's payoff function xi = Ui(si, ... , S ... , sn) 
takes for some specific choices of Si, and in particular whether these values are 
so low as completely to discourage player i from using these strategies Si.9 

Accordingly, we define an I-game G as a game where every player j knows 
the strategy spaces Si of all players i = 1, ... , j, ... , n but where, in general, 
he does not know the payoff functions Ui of these players i =1, 1* , y, *) , n. 

9Likewise, instead of assuming that player j assigns subjective probabilities to events of 
the form E = {si? i So}, we can always assume that he assigns these probabilities to events 
of the form E = { Ui(s1 , * *S, s i * , sn) < x ,?whenever si = siol, etc. 
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3. 

In terms of this definition, let us consider a given I-game G from the point of 
view of a particular player j. He can write the payoff function Ui of each player i 
(including his own payoff function Uj for i = j) in a more explicit form as 

(3.1) xi-= Ui(s, * * * , S.) = V*(8, s .. * *n; aoi, a1i . ** aiir, * *, ani), 

where Vi*, unlike Ui, is a function whose mathematical form is (in player j's 
opinion) known to all n players; whereas aoi is a vector consisting of those parame- 
ters of function Uj which (in j's opinion) are unknown to all players; and where 
each aki for k = 1, * * *, n is a vector consisting of those parameters of function 
Ui which (in j's opinion) are unknown to some of the players but are known to 
player k. If a given parameter a is known both to players k and m (without being 
known to all players), then this fact can be represented by introducing two 
variables auk and ami, with aki ami = a, and then making ak, a component of 
vector aki while making ami a component of vector am?. 

For each vector aki (k = 0, 1, , n), we shall assume that its range space 
Aki = {akin} i.e., the set of all possible values it can take, is the whole Euclidian 
space of the required number of dimensions. Then Vi* will be a function from the 
Cartesian product S1 X ... X Sn X Ao0 X ... X Ani to player i's utility line 
Siwhich is itself a copy of the real line R. 

Let us define ak as the vector combining the components of all n vectors ak1, 
* akn . Thus we write 

(3.2) ak= (akl, ,akn), 

for k = 0 1, .., i, ** , n. Clearly, vector ao summarizes the information that 
(in player J's opinion) none of the players has about the n functions U1, . . . , Un, 
whereas vector ak(k = 1, - --, n) summarizes the information that (in j's 
opinion) player k has about these functions, except for the information that (in 
j's opinion) all n players share about them. For each vector ak, its range space 
will be the set Ak = Ia = AU X .. X Akn - 

In equation (3.1) we are free to replace each vector aki(k = 0,. , n) by the 
larger vector ak = (ak1, ... , aki, * * , akn), even though this will mean that in 
each case the (n - 1) sub-vectors all, . * *, ak(,1) , ak(i+l), * , akn will occur 
vacuously in the resulting new equation. Thus, we can write 

(3.3) Xi = Vi*(81 , .* * * ,; ao, a,) . * ai . 
* an). 

For any given player i the n vectors ao, a1, ... , ai- , ai+1, * * *, an in general 
will represent unknown variables; and the same will be true for the (n - 1) 
vectors bi, .** , b, I bi+1, ... , bn to be defined below. Therefore, under the 
Bayesian hypothesis, player i will assign a subjective joint probability distribu- 
tion 

(3.4) Pi = Pi (ao , a1, * , ai-i , ai+i , *.*.* an; bi, *I* bi-,) bi+,) .. * * bn) 

to all these unknown vectors. 
For convenience we introduce the shorter notations a- (a1, ***, a,) and 
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b = (bi . , b,). The vectors obtained from a and b by omitting the sub-vector 
ai and bi, respectively, will be denoted by a' and bt. The corresponding range 
spaces can be written as A = A1 X .. X An; B = B1 X * X Bn; A = 
Al X ... X Ai-, X Ai+i X ... X An; Bi = Bi X ... X Bi-, X Bi+, X ... 
X Bne. 

Now we can write equations (3.3) and (3.4) as 

(3.5) xi = Vi*(SI ... * sn; ao I a) 

(3.6) Pi = Pi(ao, ai; bt) 

where Pi is a probability distribution over the vector space Ao X A' X Bi. 
The other (n - 1) players in general will not know the subjective probability 

distribution Pi used by player i. But player j (from whose point of view we are 
analyzing the game) will be able to write Pi for each player i (both i = j and 
i # j) in the form 

(3.7) Pi(ao, at; bi) = Ri(ao, a'; bi I bi) 

where Ri, unlike Pi, is a function whose mathematical form is (in player j's 
opinion) known to all n players; whereas bi is a vector consisting of those parame- 
ters of function Pi which (in j's opinion) are unknown to some or all of the players 
k # i. Of course, player j will realize that player i himself will know vector bi 
since bi consists of parameters of player i's own subjective probability distribu- 
tion Pi. 

The vectors bi, * *, bi-, bi+, *I* , b,, occurring in equation (3.4), which so 
far have been left undefined, are the parameter vectors of the subjective prob- 
ability distributions P1, ..., P-, ... *, P, , unknown to player i. The 
vector bt occurring in equations (3.6) and (3.7) is a combination of all these 
vectors bi, ... , bi-,, bi+, * * , b,,, and summarizes the information that (in 
player j's opinion) player i lacks about the other (n- 1) players' subjective 
probability distributions PI, * * *, P Pi+I ... , Pn . 

Clearly, function Ri is a function yielding, for each specific value of vector biX 
a probability distribution over the vector space A' X Bt. 

We now propose to eliminate the vector ao , unknown to all players, from equa- 
tions (3.5) and (3.7). In the case of equation (3.5) this can be done by taking 
expected values with respect to ao in terms of player i's own subjective probability 
distribution Pi(ao , at; bi) = Ri(ao, a'; bi bi). We define 

(3.8) Vi(si, .* ; a I bi) = Vi(s1, * n; ,sn;a, bi) 

- ft I~V(si ( ... , Sn; ao a) d(ao)Ri(aoI a; bi I bi). 
A0 

Then we write 

(3.9) xi = Vi(S1 , * n ,n; a, bi), 

where xi now denotes the expected value of player i's payoff in terms of his own 
subjective probability distribution. 
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In the case of equation (3.7) we can eliminate ao by taking the appropriate 
marginal probability distributions. We define 

(3.10) Pi(a, b$) = f d(ao)Pi(aoI a&; bV), 
A0 

and 

(3.11) R,(ai, b\ bi) = f d(ao)Ri(ao, at; Ibi). 
A0 

Then we write 

(3.12) P(at, bV) = Ri(at, b I be). 

We now rewrite equation (3.9) as 

(3.13) Xi = Vi(S] , ... , S* ; a, bi, bV) = Vi(s1, *, Sn; a, b), 

where vector bV occurs only vacuously. Likewise we rewrite equation (3.12) as 

(3.14) Pi(a', bV) = Ri(a', bV I as, bi), 

where on the right-hand side vector ai occurs only vacuously. 
Finally, we introduce the definitions ci = (as, bi); c = (a, b); and ci = (a', bV). 

Moreover, we write Ci = Ai X Bi; C = A X B; and Ct = A' X Bt. Clearly, 
vector ci represents the total information available to player i in the game (if we 
disregard the information available to all n players). Thus, we may call ci player 
i's information vector. 

From another point of view, we can regard vector ca as representing certain 
physical, social, and psychological attributes of player i himself, in that it sum- 
marizes some crucial parameters of player i's own payoff function Ui as well as 
the main parameters of his beliefs about his social and physical environment. 
(The relevant parameters of player i's payoff function Ui again partly represent 
parameters of his subjective utility function Xi and partly represent parameters 
of his environment, e.g., the amounts of various physical or human resources 
available to him, etc.) From this point of view, vector ci may be called player 
i's attribute vector. 

Thus, under this model, the players' incomplete information about the true 
nature of the game situation is represented by the assumption that in general 
the actual value of the attribute vector (or information vector) c? of any given 
player i will be known only to player i himself, but will be unknown to the 
other (n - 1) players. That is, as far as these other players are concerned, 
ci could have any one of a number-possibly even of an infinite number-of 
alternative values (which together form the range space Ci = {ci} of vector ci). 
We may also express this assumption by saying that in an I-game G, in general, 
the rules of the game as such allow any given player i to belong to any one of 
a number of possible "types", corresponding to the alternative values his attri- 
bute vector ci could take (and so representing the alternative payoff functions 
Us and the alternative subjective probability distributions Pi that player i 
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might have in the game). Each player is always assumed to know his own actual 
type but to be in general ignorant about the other players' actual types. 

Equations (3.13) and (3.14) now can be written as 

(3.15) xi = Vi(8s X**sn; c) = i(81 X * Sn cl X * Cn) 

(3.16) Pi(ct) c Ri(cfi ci) 

or 

(3.17) Pi(cI, , Ci, Ci+), ..., Cn) = Ri(c, X ci- ci+ , cnl ci). 

We shall regard equations (3.15) and (3.17) [or (3.16)] as the standard forms 
of the equations defining an I-game G, considered from the point of view of some 
particular player j. 

Formally we define the standard form of a given I-game G for some particular 
player j as an ordered set G such that 

(3.18) G = {S1, **, Sn;C, ***, Cn;Vi, *V V * n; Ri , * * Rn 

where for i = 1, , n we write Si {sI}; Ci = {ci}; moreover, where Vi is 
a function from the set Si X ... X Sn X Cl X ... X Cn to player i's utility 
line 4i (which is itself a copy of the real line R); and where, for any specific value 
of the vector ci, the function Ri = Ri(c'l ca) is a probability distribution over 
the set C' = C, X . * C X Ci+i X ... X Cn. 

4. 
Among C-games the natural analogue of this I-game G will be a C-game G* 

with the same payoff functions V? and the same strategy spaces Si. However, 
in G* the vectors ci will have to be reinterpreted as being random vectors (chance 
moves) with an objective joint probability distribution 

(4.1) R* = R*(cl , ... c, n)= R*(c) 

known to all n players.'0 (If some players did not know R*, then G* would not 
be a C-game.) To make G* as similar to G as possible, we shall assume that 
each vector ci will take its values from the same range space Ci in either game. 
Moreover, we shall assume that in game G*, just as in game G, when player i 
chooses his strategy si, he will know only the value of his own random vector 
ci but will not know the random vectors c], ... , ci1I, ci+1, ... , cn of the other 
(n - 1) players. Accordingly we may again call ci the information vector of 
player i. 

Alternatively, we may again interpret this random vector ci as representing 
certain physical, social, and psychological attributes of player i himself. (But, 
of course, now we have to assume that for all n players these attributes are de- 
termined by some sort of random process, governed by the probability distribu- 
tion R*.) Under this interpretation we may again call ci the attribute vector of 
player i. 

10 Assuming that a joint probability distribution R* of the required mathematical form 
exists (see section 5 below, as well as Part III of this paper). 
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We shall say that a given C-game G* is in standard form if 
1. the payoff functions V? of G* have the form indicated by equation (3.15); 
2. the vectors cl, * **, c,, occurring in equation (3.15) are random vectors 

with a joint probability distribution R* [equation (4.1)] known to all players; 
3. each player i is assumed to know only his own vector ci, and does not 

know the vectors cl, , ci-1, ci+i, , c of the other players when he chooses 
his strategy si . 

Sometimes we shall again express these assumptions by saying that the rules 
of the game allow each player i to belong to any one of a number of alternative 
types (corresponding to alternative specific values that the random vector ci 
can take); and that each player will always know his own actual type, but in 
general will not know those of the other players. 

Formally we define a C-game 0* in standard form as an ordered set G* such 
that 

(4.2) G* = {S1, ,SI ;CS , ,CC;VC , ; V ,Vn;R*}. 

Thus, the ordered set G* differs from the ordered set G [defined by equation 
(3.18)] only in the fact that the n-tuple R1, , Rn occurring in G is replaced 
in G* by the singleton R*. 

If we consider the normal form of a game as a special limiting case of a standard 
form (viz. as the case where the random vectors cl, , Cn are empty vectors 
without components), then, of course, every C-game has a standard form. 
But only a C-game G* containing random variables (chance moves) will have 
a standard form non-trivially different from its normal form. 

Indeed, if G* contains more than one random variable, then it will have 
several different standard forms. This is so because we can always obtain new 
standard forms G**-intermediate between the original standard form G* 
and the normal form G***-if we suppress some of the random variables occur- 
ring in G*, without suppressing all of them (as we would do if we wanted to 
obtain the normal form G*** itself). This procedure can be called partial nor- 
malization as distinguished from the full normalization, which would yield the 
normal form G***.11 

5. 

Suppose that G is an I-game (considered from player j's point of view) while 
G* is a C-game, both games being given in standard form. To obtain complete 
similarity between the two games, it is not enough if the strategy spaces Si , 
* , Sn , the range spaces C1, ... , Cn , and the payoff functions V1, ., Vn 

1 Partial normalization involves essentially the same operations as full normalization 
(see section 7 below). It involves taking the expected values of the payoff functions Vi with 
respect to the random variables to be suppressed, and redefining the players' strategies 
where necessary. However, in the case of partial normalization we also have to replace the 
probability distribution R* of the original standard form G*, by a marginal probability 
distribution not containing the random variables to be suppressed. (In the case of full 
normalization no such marginal distribution has to be computed because the normal form 
G*** will not contain random variables at all.) 
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of the two games are the same. It is necessary also that each player i in either 
game should always assign the same numerical proabability p to any given 
specific event E. Yet in game G player i will assess all probabilities in terms of 
his subjective probability distribution Ri(c'l ci); whereas in game G*-since 
vector ci is known to him-he will assess all probabilities in terms of the ob- 
jective conditional probability distribution R*(c'I ci) generated by the basic 
probability distribution R*(c) of the game G*. Therefore, if the two games are 
to be equivalent, then numerically the distributions Ri(c'l ci) and R*(cil ca) 
must be identically equal. 

This leads to the following definition. Let G be an I-game (as considered by 
player j), and let G* be a C-game, both games being given in standard form. 
We shall say that G and G* are Bayes-equivalent for player j if the following 
conditions are fulfilled: 

1. The two games must have the same strategy spaces SI, ** , Sn and the 
same range spaces C1, ... Cn 

2. They must have the same payoff functions V1, . , Vn 
3. The subjective probability distribution Ri of each player i in G must satisfy 

the relationship 

(5.1 ) Ri(c'l ci) =-R*(c'i ci), 

where R*(c) = R*(ci, ct) is the basic probability distribution of game G* and 
where 

(5.2) R*(ci ci) = R*(ci, c) f d(ci)R*(ci, cD). 

In view of equations (5.1) and (5.2) we can write 

(5.3) R* (c) = R* (ci, ci) = Ri(ci ci) * d(ci)R* (ci, ci). 

In contrast to equation (5.2), which ceases to have a clear mathematical mean- 
ing when the denominator on its right-hand side becomes zero, equation (5.3) 
always retains a clear mathematical meaning. 

We propose the following postulate. 
Postulate 1. Bayes-equivalence. Suppose that some I-game G and some C-game 

G* are Bayes-equivalent for player j. Then the two games will be completely 
equivalent for player j from a game-theoretical standpoint; and, in particular, 
player j's strategy choice will be governed by the same decision rule (the same 
solution concept) in either game. 

This postulate follows from the Bayesian hypothesis, which implies that 
every player will use his subjective probabilities exactly in the same way as he 
would use known objective probabilities numerically equal to the former. Game 
G (as assessed by player j) and game G* agree in all defining characteristics, 
including the numerical probability distributions used by the players. The only 
difference is that in G the probabilities used by each player are subjective prob- 
abilities whereas in G* these probabilities are objective (conditional) probabili- 
ties. But by the Bayesian hypothesis this difference is immaterial. 
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Of course, under the assumptions of the postulate, all we can say is that 
for player j himself the two games are completely equivalent for game-theoretical 
purposes. We cannot conclude on the basis of the information assumed that the 
two games are likewise equivalent also for some other players k z j. In order 
to reach this latter conclusion we would have to know that G and G* would 
preserve their Bayes-equivalence even if G were analyzed in terms of the func- 
tions V1, - - *, V. and R1, * * *, RA postulated by these other players k, instead 
of being analyzed in terms of the functions V1, * , V,, and R1 , R,, postu- 
lated by player j himself. But so long as we are interested only in the decision 
rules that player j himself will follow in game X, all we have to know are the 
functions V,, * * , V,, and R1, * * *, Rn that player j will be using. 

Postulate 1 naturally gives rise to the following questions. Given any I-game 
G, is it always possible to construct a C-game G* Bayes-equivalent to G? And, 
in cases where this is possible, is this C-game G* always unique? These questions 
are tantamount to asking whether for any arbitrarily chosen n-tuple of subjective 
probability distributions RI(c'l ci), *---, R,,(cjl ca), there always exists a prob- 
ability distribution R*(c, , * * * , cn) satisfying the functional equation (5.3), 
and whether this distribution R* is always unique in cases where it does exist. 
As these questions require an extended discussion, we shall answer them in 
Part III of this paper (see Theorem III and the subsequent heuristic discussion). 
We shall see that a given I-game G will have a C-game analogue G* only if a 
itself satisfies certain consistency requirements. On the other hand, if such a 
C-game analogue G* exists for G then it will be "essentially" unique (in the sense 
that, in cases where two different C-games GC*, and G2* are both Bayes-equiva- 
lent to a given I-game G, it will make no difference whether we use G1* or 2* 

for the analysis of G). In the rest of the present Part I of this paper, we shall 
restrict our analysis to I-games G for which a Bayes-equivalent C-game analogue 
G* does exist. 

As we shall make considerable use of Bayes-equivalence relationships between 
certain I-games G and certain C-games G* given in standard form, it will be 
convenient to have a short designation for the latter. Therefore, we shall intro- 
duce the term Bayesian games as a shorter name for C-games G* given in stand- 
ard form. Depending on the nature of the I-game G we shall be dealing with in 
particular cases, we shall also speak of Bayesian two-person zero-sum games, 
Bayesian bargaining games, etc. 

6. 
In view of the important role that Bayesian games will play in our analysis, 

we shall now consider two alternative (but essentially equivalent) models for 
these games, which for some purposes will usefully supplement the model we 
have defined in Sections 4 and 5. 

So far we have defined a Bayesian game G* as a game where each player's 
payoff xi = Vi(s,, * *, s ; cl, ..*., c) depends, not only on the strategies 
SI, ., sn chosen by the n players, but also on some random vectors (informa- 
tion vectors or attribute vectors) cl, - - *, Cn . It has also been assumed that all 
players will know the joint probability distribution R*(c ,*---, cn) of these 
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random vectors, but that in general the actual value of any given vector ci 
will be known only to player i himself whose information vector (or attribute 
vector) it represents. This model will be called the random-vector model for 
Bayesian games. 

An alternative model for Bayesian games can be described as follows. The 
actual individuals who will play the roles of players 1, * , n in game G* on 
any given occasion, will be selected by lot from certain populations 1, * - *, lln 
of potential players. Each population TI from which a given player i is to be 
selected will contain individuals with a variety of different attributes, so that 
every possible combination of attributes (i.e., every possible "type" of player i), 
corresponding to any specific value ci = ci that the attribute vector ci can take 
in the game, will be represented in this population Hi. If in population HI a 
given individual's attribute vector ci has the specific value ci = c0, then we shall 
say that he belongs to the attribute class c2o. Thus, each population Hi will be 
partitioned into that many attribute classes as the number of different values 
that player i's attribute vector ci can take in the game. 

As to the random process selecting n players from the n populations II', 
* lln we shall assume that the probability of players 1, ,n being selected 

from any specific n-tuple of attribute classes cl, ** , cn? will be governed"2 
by the probability distribution R*(c, , * * * , Cn). We shall also retain the hssump- 
tions that this probability distribution R* will be known to all n players, and 
that each player i will also know his own attribute class ci = cj but, in general, 

0 0 will not imow the other players' attribute classes cl = cl ***, c1 = c 

c l c= , *C * , cn c- . As in this model the lottery by which the players 
are selected occurs prior to any other move in the game, it will be called the 
prior-lottery model for Bayesian games. 

Let G be a real-life game situation where the players have incomplete infor- 
mation, and let G* be a Bayesian game Bayes-equivalent to G (as assessed by a 
given player j). Then this Bayesian game G*, interpreted in terms of the prior- 
lottery model, can be regarded as a possible representation (of course a highly 
schematic representation) of the real-life random social process which has ac- 
tually created this game situation G. More particularly, the prior-lottery model 
pictures this social process as it would be seen by an outside observer having 
information about some aspects of the situation but lacking information about 
some other aspects. He could not have enough information to predict the attri- 
bute vectors cl = c10, * *, cn cG0 of the n individuals to be selected by this 
social process to play the roles of players 1, * * *, n in game situation G. But he 
would have to have enough information to predict the joint probability distri- 
bution R* of the attribute vectors cl, * **, cG of these n individuals, and, of 

12 Under our assumptions in general the selection of players 1, * * *, n from the respective 
populations II , * * *, ln will not be statistically independent events because the probability 
distribution R*(ci, * , c,) in general will not permit of factorization into n independent 
probability distributions R1*(c1), ... , Rn*(cn). Therefore, strictly speaking, our model 
postulates simultaneous random selection of a whole player n-tuple from a population II 
of all possible player n-tuples, where II is the Cartesian product II = Hi X ... X JIn . 
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course, also to predict the mathematical form of the payoff functions V1, 
... , V.. (But he could not have enough information to predict the payoff 
functions U,, ***, U. because this would require knowledge of the attribute 
vectors of all n players.) 

In other words, the hypothetical observer must have exactly all the informa- 
tion common to the n players, but must not have access to any additional infor- 
mation private to any one player (or to any sectional group of players-and, 
of course, he must not have access to any information inaccessible to all of the 
n players). We shall call such an observer a properly informed observer. Thus, 
the prior-lottery model for Bayesian games can be regarded as a schematic 
representation of the relevant real-life social process as seen by a properly in- 
formed outside observer. 

As an example, let us again consider the price-competition game G with in- 
complete information, and the corresponding Bayesian game G*, discussed in 
Section 1 above. Here each player's attribute vector ci will consist of the varia- 
bles defining his cost functions, his financial resources, and his facilities to collect 
information about the other player.13 Thus, the prior-lottery model of G* will 
be a model where each player is chosen at random from some population of 
possible players with different cost functions, different financial resources, and 
different information-gathering facilities. We have argued that such a model can 
be regarded as a schematic representation of the real-life social process which 
has actually produced the assumed competitive situation, and has actually 
determined the cost functions, financial resources, and information-gathering 
facilities, of the two players. 

Dr. Selten has suggested'4 a third model for Bayesian games, which we shall 
call the Selten model or the posterior-lottery model. Its basic difference from the 
prior-lottery model consists in the assumption that the lottery selecting the 
active participants of the game will take place only after each potential player 
has chosen the strategy he would use in case he were in fact selected for active 
participation in the game. 

More particularly, suppose that, the attribute vector ci of player i (i = 1, 
*., n) can take ki different values in the game. (We shall assume that all 
ki's are finite but, the model can be easily extended also to the infinite case.) 
Then, instead of having one randomly selected player i in the game, we shall 
assume that the role of player i will be played at the same time by ki different 
players, each of them representing a different value of the attribute vector ci. 
The set of all ki individuals playing the role of player i in the game will be called 
the role class i. Different individuals in the same role class i will be distinguished 
by subscripts as players i1, i2, ... . Under these assumptions, obviously the 
total number of players in the game will not be n but rather will be the larger 
(usually much larger) number 

(6.1) K = I=1 kik. 

18 Cf. Footnote 4 above. 
14 In private communication (cf. Footnote 1 above). 
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It will be assumed that each player im from a given role class i will choose 
some strategy si from player i's strategy space Si . Different members of the same 
role class i may (but need not) choose different strategies si from this strategy 
space Si. 

After all K players have chosen their strategies, one player im from each role 
class i will be randomly selected as an active player. Suppose that the attribute 
vectors of the n active players so selected will be c1 c1= , , . c.. cC=,0, and 
that these players, prior to their selection, have chosen the strategies si = Si 

0 

s*,, = sn.. Then each active player in, selected from role class i, will obtain 
a payoff 

(6.2) Xi= V 0(s, ' * s.. ; cl0 , c * 0). 

All other (K - n) players not selected as active players will obtain zero payoffs. 
It will be assumed that, when the n active players are randomly selected from 

the n role classes, the probability of selecting individuals with any specific 
combination of attribute vectors c1 = c1, ... *, Cn = cn 0 will be governed by the 
probability distribution R*(ci , * * * , Cn) -5 

It is easy to see that in all three models we have discussed-in the random- 
vector model, the prior-lottery model, and the posterior-lottery model-the 
players' payoff functions, the information available to them, and the probability 
of any specific event in the game, are all essentially the same."6 Consequently, 

16 In actual fact, we could just as well assume that each player would choose his strategy 
only after the lottery, and after being informed whether this lottery has selected him as an 
active player or not. (Of course if we made this assumption then players not selected as 
active players could simply forget about choosing a strategy at all.) From a game-theoreti- 
cal point of view this assumption would make no real difference so long as each active player 
would have to choose his strategy without being told the names of the other players selected 
as active players, and in particular without being told the attribute classes to which these 
other active players would belong. 

Thus the fundamental theoretical difference between our second and third models is not 
so much in the actual timing of the postulated lottery as such. It is not so much in the fact 
that in one case the lottery precedes, and in the other case it follows, the players' strategy 
choices. The fundamental difference rather lies in the fact that our second model (like our 
first) conceives of the game as an n-person game, in which only the n active players are 
formally "players of the game"; whereas our third-, model conceives of the game as a K-per- 
son game, in which both the active and the inactive players are formally regarded as "play- 
ers". Yet, to make it easier to avoid confusion between the two models, it is convenient to 
assume also a difference in the actual timing of the assumed lottery. 

16 Technically speaking, the players' effective payoff functions under the posterior- 
lottery model are not quite identical with their payoff functions under the other two models, 
but this difference is immaterial for our purposes. Under the posterior-lottery model, let 
r = ri(c?') be the probability (marginal, probability) that a given player im with attribute 
vector ci = cil will be selected as the active player from role class i. Then player im will 
have the probability r of obtaining a payoff corresponding to the payoff function Vs and 
will have the probability (1 - r) of obtaining a zero payoff whereas under the other two 
models each player i will always obtain a payoff corresponding to the payoff function Vi . 
Consequently, under the posterior-lottery model player i's expected payoff will be only r 
times (O < r < 1) the expected payoff he could anticipate under the other two models. How- 
ever, under most game-theoretical solution concepts (and in particular under all solution 
concepts we would ourselves choose for analyzing game situations), the solution of the game 
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all three models can be considered to be essentially equivalent. But, of course, 
formally they represent quite different game-theoretical models, as the random- 
vector model corresponds to an n-person game G* with complete information, 
whereas the posterior-lottery model corresponds to a K-person game G** with 
complete information. In what follows, unless the contrary is indicated, by the 
term "Bayesian game" we shall always mean the n-person game G* corresponding 
to the random-vector model, whereas the K-person game G*t corresponding to 
the posterior-lottery model will be called the Selten game. 

In contrast to the other two models, the prior-lottery model formally does 
not qualify as a true "game" at all because it assumes that the n players are 
selected by a chance move representing the first move of the game, whereas 
under the formal game-theoretical definition of a game the identity of the players 
must always be known from the very beginning, before any chance move or 
personal move has occurred in the game. 

Thus, we may characterize the situation as follows. The real-life social process 
underlying the I-game G we are considering is best represented by the prior- 
lottery model. But the latter does not correspond to a true "game" in a game- 
theoretical sense. The other two models are two alternative ways of converting 
the prior-lottery model into a true "game". In both cases this conversion entails 
a price in the form of introducing some unrealistic assumptions. In the case of 
the posterior-lottery model corresponding to the Selten game G**, the price 
consists in introducing (K - n) fictitious players in addition to the n real 
players participating in the game.'7 

In the case of the random-vector model corresponding to the Bayesian game 
G*, there are no fictitious players, but we have to pay the price of making the 
unrealistic assumption that the attribute vector ci of each player i is determined 
by a chance move ater the beginning of the game-which seems to imply that 
player i will be in existence for some period of time, however short, during which 
he will not know yet the specific value ci = ciP his attribute vector ci will take. 
So long as the Bayesian game G* corresponding to the random-vector model is 
being considered in its standard form, this unrealistic assumption makes very 
little difference. But, as we shall see, when we convert G* into its normal form 
this unrealistic assumption implied by our model does cause certain technical 
difficulties, because it seems to commit us to the assumption that each player 
can choose his normalized strategy (i.e., his strategy for the normal-form version 
of G*) before he learns the value of his own attribute vector cal. An important 
advantage of the Selten game G** lies in the fact that it does not require this 
particular unrealistic assumption: we are free to assume that every player i2,, 

will remain invariant if the players' payoff functions are multiplied by positive constants r 
(even if different constants r are used for different players). 

In any case, the posterior-lottery model can be made completely equivalent to the other 
two models if we assume that each active player in will obtain a payoff corresponding to the 
payoff function Vi/ri(ci0), instead of obtaining a payoff corresponding to the payoff func- 
tion VI as such [as prescribed by equation (6.2)]. 

17 This will be true even if we change the timing of the assumed lottery in Selten's model 
(see Footnote 15 above). 
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will know his own attribute vector ct from the very beginning of the game, 
and will always choose his own strategy in light of this information'8 

Thus, as analytical tools used in the analysis of a given I-game G, both the 
Bayesian game G* and the Selten game G** have their own advantages and 
disadvantages."9 

7. 

Let G be an I-game given in standard form, and let G* be a Bayesian game 
Bayes-equivalent to G. Then we define the normal form X(G) of this I-game 
G as being the normal form X(G*) of the Bayesian game G*. 

To obtain this normal form we first have to replace the strategies si of each 
player i by normalized strategies Si*. A normalized strategy sio can be regarded 
as a conditional statement specifying the strategy si = si*(ci) that player i 
would use if his" information vector (or attribute vector) ci took any given 
specific value. Mathematically, a normalized strategy si* is a function from the 
range space C, = { ci of vector ci to player i's strategy space Si = { si}. The 
set of all possible such functions Si* is called player i's normalized-strategy 
space SI* = { si*}. In contrast to these normalized strategies si*, the strategies 
si available to player i in the standard form of the game will be called his ordinary 
strategies. 

If in a given game the information vector ci of a certain player i can take only 
k different values (with k finite) so that we can write 

(7.1) ci = c, * , 

then any normalized strategy si* of this player can be defined simply as a k- 
tuple of ordinary strategies 

(7.2) si = (sil, , 2 ), 

where Simr = si*(cm), with m = 1, * * *, k, denotes the strategy that player i 
would use in the standard form of the game if his information vector ci took 
the specific value ci = cim. In this case player i's normalized strategy space 
Si* = I{s*} will be the set of all such k-tuples so*, that is, it will be the k-times 
repeated Cartesian product of player i's ordinary strategy space Si by itself. 
Thus we can write Si* = S 1 .X ... XSi' with Si1 = * S = St.. 

Under either of these definitions, the normalized strategies si* will not have 
the nature of mixed strategies but rather that of behavioral strategies. Never- 

18 Moreover, as Selten has pointed out, his model also has the advantage that it can be 
extended to the case where the subjective probability distributions R1 , * * , en, of a given 
I-game G fail to satisfy the required consistency conditions, so that no probability distribu- 
tion R* satisfying equation (5.3) will exist, and therefore no Bayesian game G* Bayes- 
equivalent to G can be constructed at all. In other words, for any I-game G we can always 
define an equivalent Selten game G**, even in cases where we cannot define an equivalent 
Bayesian game G*. (See Section 15, Part III.) 

1' We have given intuitive reasons why a Bayesian game G* and the corresponding Selten 
game G** are essentially equivalent. For a more detailed and more rigorous game-theoreti- 
cal proof the reader is referred to a forthcoming paper by Reinhard Selten. 
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theless, these definitions are admissible because any game G* in standard form 
is a game of perfect recall, and so it will make no difference whether the players 
are assumed to use behavioral strategies or mixed strategies [4]. 

Equation (3.15) can now be written as 

(7.3) xi = Vi(si*(ci), **, S (Cn); c, , * 2 ) = Vi(si , S**n; c). 

In order to obtain the normal form 9T(G) = 9(G*), all we have to do now is 
to take expected values in equation (7.3) with respect to the whole random 
vector c, in terms of the basic probability distribution R*(c) of the game. We 
define 

(7.4) S(xi) = Wi(S1*, Sn. = L Vi(S1*, sn; c) dR*(c). 

Since each player will treat his expected payoff as his effective payoff from the 
game, we can replace 8(xi) simply by xi and write 

(7.5) Xi = Wi(si*, - -, Sn ). 

We can now define the normal form of games a and G* as the ordered set 

(7.6) D(G) = 9(G*) = {Si*, ***, ; W1, , Wn}. 

Compared with equations (3.18) and (4.2) defining the standard forms of 
these two games, in equation (7.6) the ordinary strategy spaces Si have been 
replaced by the normalized strategy spaces Si*, and the ordinary payoff func- 
tions Vi have been replaced by the normalized payoff functions Wi . On the other 
hand, the range spaces Ci as well as the probability distributions Ri or R* have 
been omitted because the normal form 9m(G) -T(G*) of games G and G( does 
not any more involve the random vectors c1, *, cn . 

This normal form, however, has the disadvantage that it is defined in terms 
of the players' unconditional payoff expectations 8(xi) = W,(S1*, s., Sn*), 
though in actual fact each player's strategy choice will be governed by his 
conditional payoff expectation 8(xij ci), because he will always know his own 
information vector ci at the time of making his strategy choice. This conditional 
expectation can be defined as 

(7.7) 8(xi I ci) = Zi(*, ' Sn* ci) = V(Si*, Sn Ci, C)d(ci)R (c I c) 

To be sure, it can be shown (see Theorem I of Section 8, Part II) that if 
any given player i maximizes his unconditional payoff expectation Wi, then 
he will also be maximizing his conditional payoff expectation Z ( I co) for each 
specific value of ci, with the possible exception of a small set of ci values which 
can occur only with probability zero. In this respect our analysis bears out von 
Neumann and Morgenstern's Normalization Principle [7, pp. 79-84], according 
to which the players can safely restrict their attention to the normal form of 
the game when they are making their strategy choices. 

However, owing to the special nature of Bayesian games, the Normalization 
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Principle has only restricted validity for them, and their normal form aZ(G*) 
must be used with special care, because solution concepts based on uncritical 
use of the normal form may give counterintuitive results (see Section 11 of 
Part II of this paper). In view of this fact, we shall introduce the concept of a 
semi-normal form. The semi-normal form S(G) = S(G*) of games G and G* 
will be defined as a game where the players' strategies are the normalized strate- 
gies si* described above, but where their payoff functions are the conditional 
payoff-expectation functions Z( I I ca) defined by equation (7.7). Formally we 
define the semi-normal form of the games G and G* as the ordered set 

(7.8) S(G) -S(G*) = {S1i*, * *, Sn*; C1 2 ... * Cn; Zi , ... * Zn; R*}. 

As the semi-normal form, unlike the normal form, does involve the random 
vectors cl, ... , cn, now the range spaces C,, * **, Cn, and the probability 
distribution R*, which have been omitted from equation (7.6), reappear in 
equation (7.8). 

Instead of von Neumann and Morgenstern's Normalization Principle, we 
shall use only the weaker Semi-normalization Principle (Postulate 2 below), 
which is implied by the Normalization Principle but which does not itself imply 
the latter: 

Postulate 2. Sufficiency of the Semi-normal Form. The solution of any Bayesian 
game G*, and of the Bayes-equivalent I-game G, can be defined in terms of the 
semi-normal form S (G*) = (G), without going back to the standard form of 
G* or of G. 
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