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SHAPE ANALYSIS

Several qualitative and quantitative techniques have been developed for characteriz-
ing the shape of objects within an image. These techniques are useful for classifying
objects in a pattern recognition system and for symbolically describing objects in an
image understanding system. Some of the techniques apply only to binary-valued
images; others can be extended to gray level images.

18.1. TOPOLOGICAL ATTRIBUTES

Topological shape attributes are properties of a shape that are invariant under rub-
ber-sheet transformation (1-3). Such a transformation or mapping can be visualized
as the stretching of a rubber sheet containing the image of an object of a given shape
to produce some spatially distorted object. Mappings that require cutting of the rub-
ber sheet or connection of one part to another are not permissible. Metric distance is
clearly not a topological attribute because distance can be altered by rubber-sheet
stretching. Also, the concepts of perpendicularity and parallelism between lines are
not topological properties. Connectivity is a topological attribute. Figure 18.1-1a is
a binary-valued image containing two connected object components. Figure 18.1-15
is a spatially stretched version of the same image. Clearly, there are no stretching
operations that can either increase or decrease the connectivity of the objects in the
stretched image. Connected components of an object may contain holes, as illus-
trated in Figure 18.1-1c. The number of holes is obviously unchanged by a topolog-
ical mapping.
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(a) {b) (c)
(a) Two objects (b) Two objects after (¢} Two objects with holes
riubber sheet stretching C=2H=3E=1

FIGURE 18.1-1. Topological attributes.

There is a fundamental relationship between the number of connected object
components C and the number of object holes H in an image called the Euler num-
ber, as defined by

E=C-H (18.1-1)

The Euler number is also a topological property because C and H are topological
attributes.

Irregularly shaped objects can be described by their topological constituents.
Consider the tubular-shaped object letter R of Figure 18.1-2¢, and imagine a rubber
band stretched about the object. The region enclosed by the rubber band is called the
convex hull of the object. The set of points within the convex hull, which are not in
the object, form the convex deficiency of the object. There are two types of convex
deficiencies: regions totally enclosed by the object, called lakes; and regions lying
between the convex hull perimeter and the object, called bays. In some applications
it is simpler to describe an object indirectly in terms of its convex hull and convex
deficiency. For objects represented over rectilinear grids, the definition of the convex
hull must be modified slightly to remain meaningful. Objects such as discretized
circles and triangles clearly should be judged as being convex even though their

LAKE i

BAY

(a) Object (b) Convex hull (¢) Bays and lake

FIGURE 18.1-2. Definitions of convex shape descriptors.
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boundaries are jagged. This apparent difficulty can be handled by considering a
rubber band to be stretched about the discretized object. A pixel lying totally within
the rubber band, but not in the object, is a member of the convex deficiency. Sklan-
sky et al. (4,5) have developed practical algorithms for computing the convex
attributes of discretized objects.

18.2. DISTANCE, PERIMETER, AND AREA MEASUREMENTS

Distance is a real-valued function d{(j,, k), (j, k,)} of two image points (j;, k;)
and (j,, k,) satisfying the following properties (6):

Al ky), (o kp) 3 20 (18.2-1a)
ALy, k), o k)Y = d{(p. k), Gys Ry} (18.2-1b)
Al ky), Gas kp) b + Ly Ky, (s, k3) 2 2 ALy, Ky, (s K3) ) (18.2-1¢)

There are a number of distance functions that satisfy the defining properties. The
most common measures encountered in image analysis are the Euclidean distance,

1/2

dy = [G1 =1+ (k= k)’ ] (18.2-2a)
the magnitude distance,
dye = |j1=Jo| * |1 =Ky (18.2-2b)
and the maximum value distance,
dy = MAX{|j1 =7y |k1 = #y| (18.2-2¢)

In discrete images, the coordinate differences (j;-7,) and (k;—k,) are integers,
but the Euclidean distance is usually not an integer.

Perimeter and area measurements are meaningful only for binary images. Con-
sider a discrete binary image containing one or more objects, where F(j,k) = 1 ifa
pixel is part of the object and F(j, k) = 0 for all nonobject or background pixels.

The perimeter of each object is the count of the number of pixel sides traversed
around the boundary of the object starting at an arbitrary initial boundary pixel and
returning to the initial pixel. The area of each object within the image is simply the
count of the number of pixels in the object for which F(j, k) = 1. As an example, for
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a 2x2 pixel square, the object area is 4, = 4 and the object perimeter is P, = 8.
An object formed of three diagonally connected pixels possesses A, = 3 and

P, = 12.

The enclosed area of an object is defined to be the total number of pixels for
which F(j,k) = 0 or 1 within the outer perimeter boundary Py of the object. The
enclosed area can be computed during a boundary-following process while the
perimeter is being computed (7,8). Assume that the initial pixel in the boundary-
following process is the first black pixel encountered in a raster scan of the image.
Then, proceeding in a clockwise direction around the boundary, a crack code C(p),
as defined in Section 17.6, is generated for each side p of the object perimeter such
that C(p) = 0, 1, 2, 3 for directional angles 0, 90, 180, 270°, respectively. The

enclosed area is
PE
Ag= Y -1 Ak(p)
p=1
where Pp is the perimeter of the enclosed object and
p
iw) =% A
i=1

with j(0) = 0. The delta terms are defined by

| if C(p) = 1

Ajipy =4 ¢ if C(p) =0 or2
-1 if C(p) =3
| if Cp) =0

Ak(p) =< ¢ if C(p) =1 or3
-1 if C(p) =2

(18.2-3a)

(18.2-3b)

(18.2-4a)
(18.2-4b)

(18.2-4c)

(18.2-4d)
(18.2-4e)

(18.2-4f)

Table 18.2-1 gives an example of computation of the enclosed area of the following

four-pixel object:
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TABLE 18.2-1. Example of Perimeter and Area Computation

) Cp) A j(p) A kp) ) Alp)
1 0 0 1 0 0
2 3 -1 0 -1 0
3 0 0 1 -1 -1
4 1 1 0 -1
5 0 0 1 -1
6 3 -1 0 -1 -1
7 2 0 -1 -1 0
8 3 -1 0 -2 0
9 2 0 -1 -2 2

10 2 0 -1 -2 4

11 1 1 -1 4

12 1 1 0 4

0O 0 0 0 o
0O 1 0 1 0O
0O 1 1 0 0o
0O 0 0 0 o

18.2.1. Bit Quads

Gray (9) has devised a systematic method of computing the area and perimeter of
binary objects based on matching the logical state of regions of an image to binary
patterns. Let n{Q} represent the count of the number of matches between image
pixels and the pattern Q within the curly brackets. By this definition, the object area
is then

4, = n{l1} (18.2-5)

If the object is enclosed completely by a border of white pixels, its perimeter is
equal to

P, = 2n{0 1} +2n {?} (18.2-6)

Now, consider the following set of 2 x 2 pixel patterns called bif guads defined in
Figure 18.2-1. The object area and object perimeter of an image can be expressed in
terms of the number of bit quad counts in the image as
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FIGURE 18.2-1. Bit quad patterns.

Ao = Hn{0 3 +20{0,} + 3n{05} + 4004} + 2n{0, 1 (18.2-Ta)

Py = n{Q,}+n{Q,} +n{Qs} +2n{0p} (18.2-7b)

These area and perimeter formulas may be in considerable error if they are utilized
to represent the area of a continuous object that has been coarsely discretized. More
accurate formulas for such applications have been derived by Duda (10):

Ao

{01} +1n{0,1 +2n{ 05} + n{ 04} +3n{0p} (18.2-8a)

P, = n{Q2}+%[n{Q1}+n{Q3}+2n{QD}] (18.2-8b)
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Bit quad counting provides a very simple means of determining the Euler number of
an image. Gray (9) has determined that under the definition of four-connectivity, the
Euler number can be computed as

E = n{Q;}-n{Qs5} +2n{0p}] (18.2-9a)

and for eight-connectivity
E = Hn{0,} -n{05} - 2n{0p}] (18.2-9b)

It should be noted that although it is possible to compute the Euler number E of an
image by local neighborhood computation, neither the number of connected compo-
nents C nor the number of holes H, for which £ = C — H, can be separately computed
by local neighborhood computation.

18.2.2. Geometric Attributes

With the establishment of distance, area, and perimeter measurements, various geo-
metric attributes of objects can be developed. In the following, it is assumed that the
number of holes with respect to the number of objects is small (i.e., F is approxi-
mately equal to C).

The circularity of an object is defined as

_ 41A,,

s (18.2-10)
Py

This attribute is also called the thinness ratio. A circle-shaped object has a circular-
ity of unity; oblong-shaped objects possess a circularity of less than 1.

If an image contains many components but few holes, the Euler number can be
taken as an approximation of the number of components. Hence, the average area
and perimeter of connected components, for £> 0, may be expressed as (9)

4, =40 (18.2-11)
A7 E

p, =to (18.2-12)
47 -

For images containing thin objects, such as typewritten or script characters, the
average object length and width can be approximated by
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L= (18.2-13)
24,

=4 (18.2-14)
Py

These simple measures are useful for distinguishing gross characteristics of an
image. For example, does it contain a multitude of small pointlike objects, or fewer
bloblike objects of larger size; are the objects fat or thin? Figure 18.2-2 contains
images of playing card symbols. Table 18.2-2 lists the geometric attributes of these
objects.

(a) Spade (b) Heart
(¢) Diamond (d) Club

FIGURE 18.2-2. Playing card symbol images.
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TABLE 18.2-2 Geometric Attributes of Playing Card Symbols

Attribute Spade Heart Diamond Club
Outer perimeter 652 512 548 668
Enclosed area 8,421 8,681 8.562 8.820
Average area 8,421 8,681 8,562 8,820
Average perimeter 652 512 548 668
Average length 326 256 274 334
Average width 25.8 33.9 31.3 26.4
Circularity 0.25 0.42 0.36 0.25

18.3. SPATIAL MOMENTS

From probability theory, the (m, n)th moment of the joint probability density p(x, y)
is defined as

M(m, n) = J.jo J.jo Y p(x, v) dx dy (18.3-1)
The central moment is given by
Ulm,my = [~ [ (x=n)" (=) "p(x ) de dy (18.3-2)

where 1, and n, are the marginal means of p(x, y) . These classical relationships of
probability theory have been applied to shape analysis by Hu (11) and Alt (12). The
concept is quite simple. The joint probability density p(x,y) of Egs. 18.3-1 and
18.3-2 is replaced by the continuous image function F(x, y). Object shape is charac-
terized by a few of the low-order moments. Abu-Mostafa and Psaltis (13,14) have
investigated the performance of spatial moments as features for shape analysis.

18.3.1. Discrete Image Spatial Moments

The spatial moment concept can be extended to discrete images by forming spatial
summations over a discrete image function F(j, k) . The literature (15-17) is nota-
tionally inconsistent on the discrete extension because of the differing relationships
defined between the continuous and discrete domains. Following the notation estab-
lished in Chapter 13, the (1, n)th spatial moment is defined as

J K
My(m,n) = 3 % )" ()" FG. K (18.3-3)
j=1k=1
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where, with reference to Figure 13.1-1, the scaled coordinates are

x, = k- (18.3-4a)

P I—

y=dele (18.3-4b)

The origin of the coordinate system is the lower left corner of the image. This for-
mulation results in moments that are extremely scale dependent; the ratio of second-
order (m + n = 2) to zero-order (m = n = 0) moments can vary by several orders of
magnitude (18). The spatial moments can be restricted in range by spatially scaling
the image array over a unit range in each dimension. The (m, n)th scaled spatial
moment is then defined as

K
Mmn) = == 33 (" )" F (G, B (18.3-5)
JKT i o1k=1
Clearly,
M
M(m,my = o™ (18.3-6)
JnKm

It is instructive to explicitly identify the lower-order spatial moments. The zero-
order moment

J K
M0,0) = Y Y FG.b (18.3-7)

j=1k=1

is the sum of the pixel values of an image. It is called the image surface. It F(j, k) is
a binary image, its surface is equal to its area. The first-order row moment is

J K
1 .
M(1,0) = = 3 X G R (18.3-8)
j=lk=1
and the first-order column moment is
A
MO, 1) = 5 S Y yFG R (18.3-9)
j=1k=1

Table 18.3-1 lists the scaled spatial moments of several test images. These
images include unit-amplitude gray scale versions of the playing card symbols of
Figure 18.2-2, several rotated, minified and magnified versions of these symbols, as
shown in Figure 18.3-1, as well as an elliptically shaped gray scale object shown in
Figure 18.3-2. The ratios
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SHAPE ANALYSIS

(a) Rotated spade (b) Rotated heart

<>

(¢) Rotated diamond (d) Rotated club

(e) Minified heart () Magnified heart

FIGURE 18.3-1 Rotated, magnified, and minified playing card symbol images.
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FIGURE 18.3-2 FEliptically shaped object image.

. M(1,0) )
% =00 (18.3-10a)
M0, )

% =300 (18.3-10b)

of first- to zero-order spatial moments define the image centroid. The centroid,
called the center of gravity, is the balance point of the image function F(j, k) such
that the mass of F(j, k) left and right of %, and above and below 7 is equal.

With the centroid established, it is possible to define the scaled spatial central
moments of a discrete image, in correspondence with Eq. 18.3-2, as

U(m, n) = 1 2

J
Roy-m
JE" D

K
G =% (0, —7)"F (. k) (18.3-11)
J J
k=1

For future reference, the (s, n)th unscaled spatial central moment is defined as
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J K
Uymn) = ¥ Y (=5)" (0= 5)"F (. ) (18.3-12)
j=1 k=1
where
L _My(1,0)
% = 3000 (18.3-13a)
LMy
% = 32.50.0) (18.3-13b)

It is easily shown that

Uy(m, n)
JK"

Um,n) = (18.3-14)

The three second-order scaled central moments are the row moment of inertia,

J K
U@2,0) = lz (o =% F(, B (18.3-15)
K™ o1 k=1
the column moment of inertia,
1 L& 2
u(0,2) = — 2 z ;=7 F(. k) (18.3-16)
JU 21 k=1
and the row—column cross moment of inertia,
A
v, = TK 2,1 kzl(xk—ik)(yj—)_fj)F(j, k) (18.3-17)
j=1 k=

The central moments of order 3 can be computed directly from Eq. 18.3-11 for m +
n =3, or indirectly according to the following relations:

U(3,0) = M(3,0) - 37,M(2, 0) + 2(yj)2M(1, 0) (18.3-18a)

U2, 1) = M(2,1) =27, M(1, 1) = %, M(2, 0) + 2(yj)2M(o, 1) (18.3-18b)
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U(1,2) = M(1,2) - 25, M(1, 1) - 5,M(0, 2) + 23 M(1,0)  (18.3-18¢)

U0, 3) = M(0,3) - 3%, M(0,2) + 2(x,) " M(0, 1) (18.3-18d)

Table 18.3-2 presents the horizontal and vertical centers of gravity and the scaled
central spatial moments of the test images.

The three second-order moments of inertia defined by Egs. 18.3-15, 18.3-16, and
18.3-17 can be used to create the moment of inertia covariance matrix,

(18.3-19)

Ue,0) U,
UL, 1y U(0,2)

Performing a singular-value decomposition of the covariance matrix results in the
diagonal matrix

E'UE = A (18.3-20)
where the columns of
11 2
E = (18.3-21)
€1 2
are the eigenvectors of U and
Ay O
A= (18.3-22)
0 2,

contains the eigenvalues of U. Expressions for the eigenvalues can be derived
explicitly. They are

1 1 2 2 2.1/2
Ay o= E[U(Z’ 0)+ U(0,2)]+ E[U(Z’ 0) "+ U(0,2)" -2U0(2,0)U(0,2) +4U(1, )]
(18.3-23a)
A 1 1 2 2 2.1/2
5 = E[U(Z,O) +U(0,2)] —E[U(Z, 0) "+ U(0,2) -2U0(2,0)U(0,2) +4U(1, )]

(18.3-23b)
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Let 2,, = MAX{A,2,} and A, = MIN{A,,2,}, and let the orientation angle 6
be defined as

arctan{ @} iy, = A (18.3-24a)
én
9 =
e
afctan{e—i} if 3y, = %, (18.3-24b)

The orientation angle can be expressed explicitly as

(18.3-24c)

Ao — U0, 2
0 = arctan{ M—()}

UL 1

The eigenvalues A,, and A, and the orientation angle 6 define an ellipse, as shown
in Figure 18.3-2, whose major axis is A,, and whose minor axis is A,. The major
axis of the ellipse is rotated by the angle 8 with respect to the horizontal axis. This
elliptically shaped object has the same moments of inertia along the horizontal and
vertical axes and the same moments of inertia along the principal axes as does an
actual object in an image. The ratio
R, = ;:—N (18.3-25)
M

of the minor-to-major axes is a useful shape feature.

Table 18.3-3 provides moment of inertia data for the test images. It should be
noted that the orientation angle can only be determined to within plus or minus 7./2
radians.

TABLE 18.3-3 Moment of Intertia Data of Test Images

Largest Smallest Orientation Eigenvalue
Image Eigenvalue Eigenvalue (radians) Ratio
Spade 33.286 16.215 —0.153 0.487
Rotated spade 33.223 16.200 -1.549 0.488
Heart 36.508 16.376 1.561 0.449
Rotated heart 36.421 16.400 -0.794 0.450
Magnified heart 589.190 262.290 1.562 0.445
Minified heart 2.165 0.984 1.560 0.454
Diamond 42.189 13.334 1.560 0.316
Rotated diamond 42223 13.341 —0.030 0.316
Club 37.982 21.831 -1.556 0.575
Rotated club 38.073 21.831 0.802 0.573

Ellipse 47.149 11.324 0.785 0.240
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Hu (11) has proposed a normalization of the unscaled central moments, defined
by Eq. 18.3-12, according to the relation

Uy (m, n)

Vim,n) = (18.3-26a)
[M(0, )1
where
o= ’”T*”H (18.3-26b)
form +n=2,3,.. These normalized central moments have been used by Hu to

develop a set of seven compound spatial moments that are invariant in the continu-
ous image domain to translation, rotation, and scale change. The Hu invariant
moments are defined below.

hy =V(2,0)+7(0,2) (18.3-27a)
hy = [V(2,0)- 10,21 + 407(1, DT (18.3-27b)
hy = [V(3,0)=37(1,2)1% + [7(0,3) - 372, )] (18.3-27¢)
hy =1V (3,0)+ V(1,217 + [#(0,3) - ¥(2, )] (18.3-27d)

hs =[V(3,0)=3V(1, 2)]1[V(3,0) + V(1, 2)][[¥(3,0) + ¥(1, 2)]2—3[V(O, 3)+ V(2, 1)]2]
+ 372, 1) = V(0,)IL7(0,3)+ ¥ (2, DI3IV(3,0) + V(1, 2)]2
—17(0,3) + 72, D] (18.3-27¢)
he = [V(2,0) - F(0,2)][[V(3,0) + (1, 2)]2 -[7(0,3) + ¥(2, 1)]2]
+4V(1, DIV(3,0)+ V(1, 2)]117(0,3) + ¥ (2, 1)] (18.3-27f)
ho=[3V(2, 1) = V(0,3)]1[V(3, 0) + V(1, )][[¥(3,0) + ¥(1, 2)]273[V(O, 3)+ V(2, 1)]2]
+[3V(1,2) = V(3,017 (0,3)+ V2, DI3IV(E,0) + 71, 2)]2

~[7(0,3) + 72, DT'] (18.3-27g)

Table 18.3-4 lists the moment invariants of the test images. As desired, these
moment invariants are in reasonably close agreement for the geometrically modified
versions of the same object, but differ between objects. The relatively small degree
of variability of the moment invariants for the same object is due to the spatial dis-
cretization of the objects.



TABLE 18.3-4 Invariant Moments of Test Images

SHAPE ORIENTATION DESCRIPTORS

607

Image mx100 hyx10° hyx10° myx 100 hsx10° hgx10° hyx 10!
Spade 1920 4387 0715 0295 0123 0185 -14.15
Rotated spade 1919 4371 0704 0270 0097 0162 -11.102
Heart 1867 5052 1435 8052 27340 5702 -15.483
Rotated heart 1866 5004 1434 8010 27.126 5650 -14.788
Magnified heart 1873 5710 1473 8600 30575 6162  0.559
Minified heart 1863 4887 1443 8019 27241 5583  0.658
Diamond 1986 10648 0018 0475  0.004 0490 0004
Rotated diamond 1987  10.663  0.024 0656  0.082 0.678  -0.020
Club 2033 3014 2313 5641 20353 3.096  10.226
Rotated club 2033 3.040 2323 5749 20968 3167 13487
Ellipse 2015 15242 0000 0000 0000 0000  0.000

The terms of Eq. 18.3-27 contain differences of relatively large quantities, and
therefore, are sometimes subject to significant roundoff error. Liao and Pawlak (19)
have investigated the numerical accuracy of moment measures.

18.4. SHAPE ORIENTATION DESCRIPTORS

The spatial orientation of an object with respect to a horizontal reference axis is the
basis of a set of orientation descriptors developed at the Stanford Research Institute
(20). These descriptors, defined below, are described in Figure 18.4-1.

1. Image-oriented bounding box: the smallest rectangle oriented along the rows

of the image that encompasses the object

2. Image-oriented box height: dimension of box height for image-oriented box

i’
Ww-a

{¢) Radial measures

{a) Image-oriented
bounding box

(#) Object-oriented
bounding box

& =

FIGURE 18.4-1. Shape orientation descriptors.



608

10.

11.

12.

13.

14.

15.

SHAPE ANALYSIS

Image-oriented box width: dimension of box width for image-oriented box
Image-oriented box area. area of image-oriented bounding box

Image oriented box ratio: ratio of box area to enclosed area of an object for
an image-oriented box

Object-oriented bounding box: the smallest rectangle oriented along the
major axis of the object that encompasses the object

Object-oriented box height: dimension of box height for object-oriented box
Object-oriented box width: dimension of box width for object-oriented box
Object-oriented box area: area of object-oriented bounding box

Object-oriented box ratio: ratio of box area to enclosed area of an object for
an object-oriented box

Minimum radius: the minimum distance between the centroid and a perimeter
pixel

Maximum radius: the maximum distance between the centroid and a perime-
ter pixel

Minimum radius angle: the angle of the minimum radius vector with respect
to the horizontal axis

Maximum radius angle: the angle of the maximum radius vector with respect
to the horizontal axis

Radius ratio: ratio of minimum radius angle to maximum radius angle

Table 18.4-1 lists the orientation descriptors of some of the playing card symbols.

TABLE 18.4-1 Shape Orientation Descriptors of the Playing Card Symbols

Rotated Rotated Rotated
Descriptor Spade Heart Diamond Club
Row-bounding box height 155 122 99 123
Row-bounding box width 95 125 175 121
Row-bounding box area 14,725 15,250 17,325 14,883
Row-bounding box ratio 1.75 1.76 2.02 1.69
Object-bounding box height 94 147 99 148
Object-bounding box width 154 93 175 112
Object-bounding box area 14,476 13,671 17,325 16,576
Object-bounding box ratio 1.72 1.57 2.02 1.88
Minimum radius 11.18 38.28 38.95 26.00
Maximum radius 92.05 84.17 88.02 82.22
Minimum radius angle -1.11 0.35 1.06 0.00

Maximum radius angle -1.54 -0.76 0.02 0.85
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18.5. FOURIER DESCRIPTORS
The perimeter of an arbitrary closed curve can be represented by its instantaneous
curvature at each perimeter point. Consider the continuous closed curve drawn on
the complex plane of Figure 18.5-1, in which a point on the perimeter is measured

by its polar position z(s) as a function of arc length s. The complex function z(s)
may be expressed in terms of its real part x(s) and imaginary part y(s) as

2(s) = x(s) +iy(s) (18.5-1)

The tangent angle defined in Figure 18.5-1 is given by

dy(s)/ d.
®(s) = arctan M (18.5-2)
dx(s)/ds
and the curvature is the real function
k(s) = 926) (18.5-3)

ds

The coordinate points x(s), ¥(s) can be obtained from the curvature function by the
reconstruction formulas

x(s) = x(0) +jos k(o) cos {D(0)} dat (18.5-4a)
(s) = y(0)+jos k(o) sin{ d(o0) } dat (18.5-4b)

where x(0) and y(0) are the starting point coordinates.

(s)f P
e z(s) \\qjy
N

FIGURE 18.5-1. Geometry for curvature definition.
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Because the curvature function is periodic over the perimeter length P, it can be
expanded in a Fourier series as

k)= Y cnexp{y} (18.5-5a)

n=—c0

where the coefficients ¢, are obtained from
1P _2min )
¢, = }_)jo k(s)exp{ =" }ds (18.5-5b)

This result is the basis of an analysis technique developed by Cosgriff (21) and Brill
(22) in which the Fourier expansion of a shape is truncated to a few terms to produce
a set of Fourier descriptors. These Fourier descriptors are then utilized as a symbolic
representation of shape for subsequent recognition.

If an object has sharp discontinuities (e.g., a rectangle), the curvature function is
undefined at these points. This analytic difficulty can be overcome by the utilization
of a cumulative shape function

8() = [ k(oo doc- 22 (185-6)

proposed by Zahn and Roskies (23). This function is also periodic over P and can
therefore be expanded in a Fourier series for a shape description.

Bennett and MacDonald (24) have analyzed the discretization error associated
with the curvature function defined on discrete image arrays for a variety of connec-
tivity algorithms. The discrete definition of curvature is given by

Z(Sj) = x(sj) + iy(Sj) (18.5-7a)
(s = arctan{w} (18.5-7b)
X(Sj)_x(sj,l)

k(s) = @(s;) = D(s;_y) (18.5-7c)

where s; represents the jth step of arc position. Figure 18.5-2 contains results of the
Fourier expansion of the discrete curvature function.
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FIGURE 18.5-2. Fourier expansions of curvature function.
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