Digital Image Processing: PIKS Inside, Third Edition. William K. Pratt
Copyright © 2001 John Wiley & Sons, Inc.
ISBNs: 0-471-37407-5 (Hardback); 0-471-22132-5 (Electronic)

19

IMAGE DETECTION AND REGISTRATION

This chapter covers two related image analysis tasks: detection and registration.
Image detection is concerned with the determination of the presence or absence of
objects suspected of being in an image. Image registration involves the spatial align-
ment of a pair of views of a scene.

19.1. TEMPLATE MATCHING

One of the most fundamental means of object detection within an image field is by
template matching, in which a replica of an object of interest is compared to all
unknown objects in the image field (1-4). If the template match between an
unknown object and the template is sufficiently close, the unknown object is labeled
as the template object.

As a simple example of the template-matching process, consider the set of binary
black line figures against a white background as shown in Figure 19.1-1a. In this
example, the objective is to detect the presence and location of right triangles in the
image field. Figure 19.1-1b contains a simple template for localization of right trian-
gles that possesses unit value in the triangular region and zero elsewhere. The width
of the legs of the triangle template is chosen as a compromise between localization
accuracy and size invariance of the template. In operation, the template is sequen-
tially scanned over the image field and the common region between the template
and image field is compared for similarity.

A template match is rarely ever exact because of image noise, spatial and ampli-
tude quantization effects, and a priori uncertainty as to the exact shape and structure
of an object to be detected. Consequently, a common procedure is to produce a
difference measure D(m, n) between the template and the image field at all points of
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(a) Array of objects

(b) Triangle template

FIGURE 19.1-1. Template-matching example.

the image field where ~-M<m <M and -N<n <N denote the trial offset. An object
is deemed to be matched wherever the difference is smaller than some established
level L (m, n). Normally, the threshold level is constant over the image field. The
usual difference measure is the mean-square difference or error as defined by

Dimn) =YY (FG, k)= TG —m, k—m) ] (19.1-1)
ik

where F(j, k) denotes the image field to be searched and 7(j, k) is the template. The
search, of course, is restricted to the overlap region between the translated template
and the image field. A template match is then said to exist at coordinate (m, n) if

D(m,n) < Lp(m, n) (19.1-2)
Now, let Eq. 19.1-1 be expanded to yield

D(m,n) = D (m,n) = 2D,(m, n) + Dy(m, n) (19.1-3)
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where

Dyommy = ¥ Y [F( BT (19.1-4a)
J ok

Dy(m,n) = zz [F(j,K)TG —m, k—n)] (19.1-4b)
ik

Dyomn) = 33 [T(-m k=m)]° (19.1-4¢)
J ok

The term Dy(m,n) represents a summation of the template energy. It is constant
valued and independent of the coordinate (m, n). The image energy over the window
area represented by the first term D,(m, n) generally varies rather slowly over the
image field. The second term should be recognized as the cross correlation
Rpr(m, n) between the image field and the template. At the coordinate location of a
template match, the cross correlation should become large to yield a small differ-
ence. However, the magnitude of the cross correlation is not always an adequate
measure of the template difference because the image energy term D, (m,n) is posi-
tion variant. For example, the cross correlation can become large, even under a con-
dition of template mismatch, if the image amplitude over the template region is high
about a particular coordinate (m, n). This difficulty can be avoided by comparison of
the normalized cross correlation

S SIFG KT - m, k=]
k

- D -
Reg(m, n) = Dz(m, N - (19.1-5)
1(m. ) S S G, ]
J ok
to a threshold level Lg(m, n). A template match is said to exist if
Rpr(m, n) > Ly(m, n) (19.1-6)

The normalized cross correlation has a maximum value of unity that occurs if and
only if the image function under the template exactly matches the template.

One of the major limitations of template matching is that an enormous number of
templates must often be test matched against an image field to account for changes
in rotation and magnification of template objects. For this reason, template matching
is usually limited to smaller local features, which are more invariant to size and
shape variations of an object. Such features, for example, include edges joined in a
Y or T arrangement.
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19.2. MATCHED FILTERING OF CONTINUOUS IMAGES

Matched filtering, implemented by electrical circuits, is widely used in one-dimen-
sional signal detection applications such as radar and digital communication (5-7).
It is also possible to detect objects within images by a two-dimensional version of
the matched filter (8—-12).

In the context of image processing, the matched filter is a spatial filter that pro-
vides an output measure of the spatial correlation between an input image and a ref-
erence image. This correlation measure may then be utilized, for example, to
determine the presence or absence of a given input image, or to assist in the spatial
registration of two images. This section considers matched filtering of deterministic
and stochastic images.

19.2.1. Matched Filtering of Deterministic Continuous Images

As an introduction to the concept of the matched filter, consider the problem of
detecting the presence or absence of a known continuous, deterministic signal or ref-
erence image F(x,y) in an unknown or input image F(x,y) corrupted by additive

stationary noise N(x,y) independent of F(x,y). Thus, Fy(x,y) is composed of the
signal image plus noise,

Filx,y) = F(x,y) + N(x,y) (19.2-1a)
or noise alone,
Fdx,y) = N(x, ») (19.2-1b)

The unknown image is spatially filtered by a matched filter with impulse response
H(x,y) and transfer function #(o,, (oy) to produce an output

Fo(x,y) = Frlx,») ® H(x, y) (19.2-2)

The matched filter is designed so that the ratio of the signal image energy to the
noise field energy at some point (g,m) in the filter output plane is maximized.

The instantaneous signal image energy at point (e¢,m) of the filter output in the
absence of noise is given by

ISte, I = |Fx, ) ® Hex, ) (19.2-3)
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with x = € and y = 1. By the convolution theorem,

2
|S(e, T])|2 - J'io J'j; F(o, 0)Ho, o)expl{i(oe+on)}dodo,| (19.2-4)

where Ho,, (oy) is the Fourier transform of F(x,y). The additive input noise com-
ponent N(x,y) is assumed to be stationary, independent of the signal image, and
described by its noise power-spectral density Wy(o®,, ®,). From Eq. 1.4-27, the total
noise power at the filter output is

N = J'ZJ'Z Wy (@, ©)|H(®,, (oy)|2d(ox do, (19.2-5)
Then, forming the signal-to-noise ratio, one obtains

2
N7 Fo,0)H(o, o) exp {i(we+on)}do, do
IS(e],vn)I2 _ U,M,L, Y y i L (19.2:6)

J'ZJ': Wy (0, (oy)|ﬂ{((ox, (oy)|2d(oxd(ny

This ratio is found to be maximized when the filter transfer function is of the form
(5.8)

FH(o,, (oy) exp {—i(®,+ (oyn)}
Wy (®,, (oy)

(o, 0,) = (19.2-7)

If the input noise power-spectral density is white with a flat spectrum,
Wy (®,, (ny) = n,,/2, the matched filter transfer function reduces to

H (o, ooy) = nl (o, (ny) exp {—i (& + (oyn)} (19.2-8)

and the corresponding filter impulse response becomes
H(x,y) = 2 5% -x,-y) (19.2:9)
nW

In this case, the matched filter impulse response is an amplitude scaled version of
the complex conjugate of the signal image rotated by 180°.
For the case of white noise, the filter output can be written as

Fo(x,y) = }%FU(x,y) ® F*(e —x,M—) (19.2-10a)
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or
Fo(x,y) = n2_w [7 [ e ByFs(a+e—x.B+n-y)dadB (19.2-10b)

If the matched filter offset (g, 1) is chosen to be zero, the filter output
Fy(xy) = % [ [ oo BYF* (0=, B - ) dloc B (19.2-11)

is then seen to be proportional to the mathematical correlation between the input
image and the complex conjugate of the signal image. Ordinarily, the parameters
(e,m) of the matched filter transfer function are set to be zero so that the origin of
the output plane becomes the point of no translational offset between F(x,y) and
F(x,y).

If the unknown image F(x,y) consists of the signal image translated by dis-
tances (Ax, Ay) plus additive noise as defined by

Fy(x,y) = F(x+Ax,y+ Ay) + N(x, y) (19.2-12)
the matched filter output for € = 0, 1 = 0 will be
Folx,y) = = [ ] U A%, B+ A7) + N(x, ) 10—, B -y) dot . (19.2-13)
n,, J-eod-co

A correlation peak will occur at x = Ax, y = Ay in the output plane, thus indicating
the translation of the input image relative to the reference image. Hence the matched
filter is translation invariant. It is, however, not invariant to rotation of the image to
be detected.

It is possible to implement the general matched filter of Eq. 19.2-7 as a two-stage
linear filter with transfer function

Ho,, (oy) = Hy(o, (oy)ﬂ{B((ox, (oy) (19.2-14)

The first stage, called a whifening filter, has a transfer function chosen such that
noise N(x,y) with a power spectrum W,(w,, ®,) at its input results in unit energy
white noise at its output. Thus

W@, )7, (0,, 0)|" = 1 (19.2-15)
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The transfer function of the whitening filter may be determined by a spectral factor-
ization of the input noise power-spectral density into the product (7)

Wy (0, ®,) = Wy (0, ®,) Wy (0, 0,) (19.2-16)

such that the following conditions hold:

Wy (0, 0,) = [Wy (0,0)] (19.2-17a)
Wy (0, ) = [Wy (0, 0)] (19.2-17b)
+ 2 _ 2
Wy (o, ) = | Wy (0, 0)] = Wy (0, 0)| (19.2-17¢)

The simplest type of factorization is the spatially noncausal factorization

Wy (0, ©,) = [Wy(o, 0,) exp {80, 0,)} (19.2-18)

where 6(w,, ®,) represents an arbitrary phase angle. Causal factorization of the
input noise power-spectral density may be difficult if the spectrum does not factor
into separable products. For a given factorization, the whitening filter transfer func-
tion may be set to

1

- (19.2-19)
Wy (0, (oy)

Hy(w,, (oy) =

The resultant input to the second-stage filter is F(x, y) + Ny(x, y), where Ny (x, y)
represents unit energy white noise and

Fi(x,y) = F(x,y) ® Hy(x,) (19.2-20)

is a modified image signal with a spectrum

Ao, o,)

F(o, (oy) = Ao, (ny)ﬂ{A((ox, (ny) = (19.2-21)

‘W; (®,, (ny)

From Eq. 19.2-8, for the white noise condition, the optimum transfer function of the
second-stage filter is found to be
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7 (0, ®,)

Hp(o,, (ny) = —
Wy (o, (ny)

exp{-i(®.e+® )} (19.2-22)

Calculation of the product #,(®,, (ny)ﬂ{B((nx, (ny) shows that the optimum filter
expression of Eq. 19.2-7 can be obtained by the whitening filter implementation.

The basic limitation of the normal matched filter, as defined by Eq. 19.2-7, is that
the correlation output between an unknown image and an image signal to be
detected is primarily dependent on the energy of the images rather than their spatial
structure. For example, consider a signal image in the form of a bright hexagonally
shaped object against a black background. If the unknown image field contains a cir-
cular disk of the same brightness and area as the hexagonal object, the correlation
function resulting will be very similar to the correlation function produced by a per-
fect match. In general, the normal matched filter provides relatively poor discrimi-
nation between objects of different shape but of similar size or energy content. This
drawback of the normal matched filter is overcome somewhat with the derivative
malched filter (8), which makes use of the edge structure of an object to be detected.
The transfer function of the pth-order derivative matched filter is given by

(@1 + o)) 7 (0, 0 )exp{-i(o.e+ 0,1}

H (o, = 19.2-23
(% & Wy, 0,) (19229
where p is an integer. If p = 0, the normal matched filter
0, o )exp{-i(oe+®ON)}
9, = 2 z 19.2-24
)@, ©,) o o) (19.2:24)
is obtained. With p = 1, the resulting filter
2. 2
ﬂ{p(wx, ) = (@ + (ny)ﬂ{o((ox, ®,) (19.2-25)
is called the Laplacian matched filter. Its impulse response function is
_ (9 ]
Hi(x,y) = | —+— | ®Hy(x,y) (19.2-26)
7 7
ox~  ady

The pth-order derivative matched filter transfer function is

ﬂ{p(mx, (oy) = ((0)26 + (o;)pﬂ{o((nx, (oy) (19.2-27)
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Hence the derivative matched filter may be implemented by cascaded operations
consisting of a generalized derivative operator whose function is to enhance the
edges of an image, followed by a normal matched filter.

19.2.2. Matched Filtering of Stochastic Continuous Images

In the preceding section, the ideal image F(x,y) to be detected in the presence of
additive noise was assumed deterministic. If the state of F(x,y) is not known
exactly, but only statistically, the matched filtering concept can be extended to the
detection of a stochastic image in the presence of noise (13). Even if F(x,y) is
known deterministically, it is often useful to consider it as a random field with a
mean E{F(x,y)} = F(x,y). Such a formulation provides a mechanism for incorpo-
rating a priori knowledge of the spatial correlation of an image in its detection. Con-
ventional matched filtering, as defined by Eq. 19.2-7, completely ignores the spatial
relationships between the pixels of an observed image.
For purposes of analysis, let the observed unknown field

Fy(x,y) = F(x,y) + N(x, ») (19.2-28a)
or noise alone
Fy(x,y) = Nx, ) (19.2-28b)

be composed of an ideal image F(x, y), which is a sample of a two-dimensional sto-
chastic process with known moments, plus noise N(x,y) independent of the image,
or be composed of noise alone. The unknown field is convolved with the matched
filter impulse response H(x,y) to produce an output modeled as

Fox,y) = Fy(x,y) ® H(x,y) (19.2-29)

The stochastic matched filter is designed so that it maximizes the ratio of the aver-
age squared signal energy without noise to the variance of the filter output. This is
simply a generalization of the conventional signal-to-noise ratio of Eq. 19.2-6. In the
absence of noise, the expected signal energy at some point (¢,1) in the output field
is

ISte, > = |ECF(x. )} ® H(x, ) (19.2-30)

By the convolution theorem and linearity of the expectation operator,

2
IS(e, T])|2 - J':J'ZE{ F(o, 0)}Ho, 0)expli(o.e+on)}do, do,| (19.2-31)
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The variance of the matched filter output, under the assumption of stationarity and
signal and noise independence, is

N = J';J':[‘WF((DX, ®,) + Wy(o,, ) ]|H(o,, o)y)|2 do, do,  (19.2-32)

where W(w,, ®,) and Wy(o,, ®,) are the image signal and noise power spectral
densities, respectively. The generalized signal-to-noise ratio of the two equations
above, which is of similar form to the specialized case of Eq. 19.2-6, is maximized
when

E{ 7*(0,, o) exp{-i(0e+®M)}
We(®, ©.) + Wy, o)

o, ®) = (19.2-33)

Note that when F(x,y) is deterministic, Eq. 19.2-33 reduces to the matched filter
transfer function of Eq. 19.2-7.

The stochastic matched filter is often modified by replacement of the mean of the
ideal image to be detected by a replica of the image itself. In this case, for
e=1n=0,

(0, )

19.2-34
W, (ny) + W, (ny) ( )

Ho,, (ny) =

A special case of common interest occurs when the noise is white,
Wy(w, ®,) = ny/2, and the ideal image is regarded as a first-order nonseparable
Markov process, as defined by Eq. 1.4-17, with power spectrum

W0, 0,) = 2; (19.2-35)

2 2
o +(Dx+(Dy

where exp{-a} is the adjacent pixel correlation. For such processes, the resultant
modified matched filter transfer function becomes

2 2 02
20" + o + ) FHO, 0)

2

; 3 > (19.2-36)
+ap(o + o+ (ny)

Ho,, (oy) =

At high spatial frequencies and low noise levels, the modified matched filter defined
by Eq. 19.2-36 becomes equivalent to the Laplacian matched filter of Eq. 19.2-25.
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19.3. MATCHED FILTERING OF DISCRETE IMAGES
A matched filter for object detection can be defined for discrete as well as continu-
ous images. One approach is to perform discrete linear filtering using a discretized
version of the matched filter transfer function of Eq. 19.2-7 following the techniques
outlined in Section 9.4. Alternatively, the discrete matched filter can be developed
by a vector-space formulation (13,14). The latter approach, presented in this section,
is advantageous because it permits a concise analysis for nonstationary image and

noise arrays. Also, image boundary effects can be dealt with accurately. Consider an
observed image vector

f,=f+n (19.3-1a)
or
f,=n (19.3-1b)

composed of a deterministic image vector f plus a noise vector n, or noise alone.
The discrete matched filtering operation is implemented by forming the inner prod-
uct of f,, with a matched filter vector m to produce the scalar output

fp=m't, (19.3-2)

Vector m is chosen to maximize the signal-to-noise ratio. The signal power in the
absence of noise is simply

S = [m't’ (19.3-3)

and the noise power is
N = E{[an] [an]T} = mTKnm (19.3-4)
where K is the noise covariance matrix. Hence the signal-to-noise ratio is
= ﬁ (19.3-5)

The optimal choice of m can be determined by differentiating the signal-to-noise
ratio of Eq. 19.3-5 with respect to m and setting the result to zero. These operations
lead directly to the relation
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m K m 1

m = LK f (19.3-6)
T,
m f

where the term in brackets is a scalar, which may be normalized to unity. The
matched filter output

fo = 'K, 'ty (19.3-7)

reduces to simple vector correlation for white noise. In the general case, the noise
covariance matrix may be spectrally factored into the matrix product

K = KK’

n

(19.3-8)

1/

with K = EA| 2, where E is a matrix composed of the eigenvectors of K and A

is a diagonal matrix of the corresponding eigenvalues (14). The resulting matched
filter output

o = K1 K1y (19.3-9)

can be regarded as vector correlation after the unknown vector f,, has been whir-
ened by premultiplication by KL

Extensions of the previous derivation for the detection of stochastic image vec-
tors are straightforward. The signal energy of Eq. 19.3-3 becomes

2
S = [m'm,] (19.3-10)
where 1, is the mean vector of f and the variance of the matched filter output is
T T
N=mKm+mKm (19.3-11)

under the assumption of independence of f and n. The resulting signal-to-noise ratio
is maximized when

m = [K;+ K, ' (19.3-12)

Vector correlation of m and f;; to form the matched filter output can be performed
directly using Eq. 19.3-2 or alternatively, according to Eq. 19.3-9, where
K = EA"? and E and A denote the matrices of eigenvectors and eigenvalues of
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[K;+ K, ], respectively (14). In the special but common case of white noise and a
separable, first-order Markovian covariance matrix, the whitening operations can be
performed using an efficient Fourier domain processing algorithm developed for
Wiener filtering (15).

19.4. IMAGE REGISTRATION

In many image processing applications, it is necessary to form a pixel-by-pixel com-
parison of two images of the same object field obtained from different sensors, or of
two images of an object field taken from the same sensor at different times. To form
this comparison, it is necessary to spatially register the images, and thereby, to cor-
rect for relative translation shifts, rotational differences, scale differences and even
perspective view differences. Often, it is possible to eliminate or minimize many of
these sources of misregistration by proper static calibration of an image sensor.
However, in many cases, a posteriori misregistration detection and subsequent cor-
rection must be performed. Chapter 13 considered the task of spatially warping an
image to compensate for physical spatial distortion mechanisms. This section
considers means of detecting the parameters of misregistration.

Consideration is given first to the common problem of detecting the translational
misregistration of two images. Techniques developed for the solution to this prob-
lem are then extended to other forms of misregistration.

19.4.1. Translational Misregistration Detection

The classical technique for registering a pair of images subject to unknown transla-
tional differences is to (1) form the normalized cross correlation function between
the image pair, (2) determine the translational offset coordinates of the correlation
function peak, and (3) translate one of the images with respect to the other by the
offset coordinates (16,17). This subsection considers the generation of the basic
cross correlation function and several of its derivatives as means of detecting the
translational differences between a pair of images.

Basic Correlation Function. Let F,(j, k) and F,(j, k), for 1<;<J and 1<k<K,
represent two discrete images to be registered. F;(j, k) is considered to be the
reference image, and

Fy( k) = Fi(G—j, k-k,) (19.4-1)

is a translated version of F,(j, k) where (j,, k,) are the offset coordinates of the
translation. The normalized cross correlation between the image pair is defined as
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FIGURE 19.4-1. Geometrical relationships between arrays for the cross correlation of an
image pair.

S Fi (G OF,(j=m+ (M+1)/2,k=n+ (N+1)/2)
k

R(m,n) = J

] 1
2

[ZZ [F;(J, Ic)]z}2 [ZZ[Fz(j—m (M4 1)/2,k=n+(N+ 1)/2)]2]
T '

Jj ok

(19.4-2)

form=1,2,...,Mandn=1,2,..., N, where M and N are odd integers. This formu-
lation, which is a generalization of the template matching cross correlation expres-
sion, as defined by Eq. 19.1-5, utilizes an upper left corner—justified definition for
all of the arrays. The dashed-line rectangle of Figure 19.4-1 specifies the bounds of
the correlation function region over which the upper left corner of F,(, k) moves in
space with respect to F,(j, k) . The bounds of the summations of Eq. 19.4-2 are

MAX{1,m—(M—1)/2}<j <MIN{J,J+m— (M+1)/2} (19.4-3a)

MAX{1,n—(N-1)/2} Sk SMIN{K,K+n— (N+1)/2}  (19.4-3b)

These bounds are indicated by the shaded region in Figure 19.4-1 for the trial offset
(a, b). This region is called the window region of the correlation function computa-
tion. The computation of Eq. 19.4-2 is often restricted to a constant-size window
area less than the overlap of the image pair in order to reduce the number of



IMAGE REGISTRATION 627

calculations. This Px Q constant-size window region, called a template region, is
defined by the summation bounds

m< j<m+J-M (19.4-4a)

n<k<n+K-N (19.4-4b)

The dotted lines in Figure 19.4-1 specify the maximum constant-size template
region, which lies at the center of F,(j, k). The sizes of the M x N correlation func-
tion array, the Jx K search region, and the P x Q template region are related by

M=J-P+1 (19.4-5a)

N=K-0+1 (19.4-5b)

For the special case in which the correlation window is of constant size, the cor-
relation function of Eq. 19.4-2 can be reformulated as a template search process. Let
S(u,v) denote a Ux V' search area within F,(j, k) whose upper left corner is at the
offset coordinate (j, k). Let T(p, ¢) denote a P x Q template region extracted from
F,(j, k) whose upper left corner is at the offset coordinate (j,, k,). Figure 19.4-2
relates the template region to the search area. Clearly, U> P and V> Q. The normal-
ized cross correlation function can then be expressed as

3 S ST u=m+ (M+1)/2,v=n+(N+1)/2)

R(m,n) = U

[> 3 s wr]

1
[Z S [Tu=-m+ (M+ 1)/2,v-n+ N+ 1)/ ]2

13

b3 =

(19.4-6)
form=1,2,....,Mandn =1, 2,..., N where
M=U-P+1 (19.4-7a)
N=V-0+1 (19.4-7b)
The summation limits of Eq. 19.4-6 are
m<us<m+P-1 (19.4-8a)

n<vin+ Q-1 (19.4-8b)
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FIGURE 19.4-2. Relationship of template region and search area.

Computation of the numerator of Eq. 19.4-6 is equivalent to raster scanning the
template T(p, g) over the search area S(u,v) such that the template always resides
within S(, v), and then forming the sum of the products of the template and the
search area under the template. The left-hand denominator term is the square root of
the sum of the terms [S(x, v)]2 within the search area defined by the template posi-
tion. The right-hand denominator term is simply the square root of the sum of the
template terms [7(p, q)]2 independent of (m, n). It should be recognized that the
numerator of Eq. 19.4-6 can be computed by convolution of S(x, v) with an impulse
response function consisting of the template T(p, ¢) spatially rotated by 180°. Simi-
larly, the left-hand term of the denominator can be implemented by convolving the
square of S(u, v) with a PxQ uniform impulse response function. For large tem-
plates, it may be more computationally efficient to perform the convolutions indi-
rectly by Fourier domain filtering.

Statistical Correlation Function. There are two problems associated with the basic
correlation function of Eq. 19.4-2. First, the correlation function may be rather
broad, making detection of its peak difficult. Second, image noise may mask the
peak correlation. Both problems can be alleviated by extending the correlation func-
tion definition to consider the statistical properties of the pair of image arrays.

The statistical correlation function (14) is defined as

22 G, DG(j-m+(M+1)/2,k—n+(N+1)/2)
ik

Rg(m, n) = J

1/2

[Z 3 160, k)]z]l/z[ZZ[Gz(j—m (M+1)/2, k=n+(N+ 1)/2)]2]
7k 7x
(19.4-9)
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The arrays G,(/, k) are obtained by the convolution operation
G,(j, b = [F(j, k) =Fi(j, )] ® D,(j, k) (19.4-10)

where F;(j, k) is the spatial average of F,(j, k) over the correlation window. The
impulse response functions D,(j, k) are chosen to maximize the peak correlation
when the pair of images is in best register. The design problem can be solved by
recourse to the theory of matched filtering of discrete arrays developed in the pre-
ceding section. Accordingly, let f; denote the vector of column-scanned elements of
F,(j, k) in the window area and let f,(m, n) represent the elements of F,(j, k) over
the window area for a given registration shift (m, n) in the search area. There are a
total of M-N vectors f,(m, n). The elements within f; and f,(m,n) are usually
highly correlated spatially. Hence, following the techniques of stochastic method
filtering, the first processing step should be to whiten each vector by premultiplica-
tion with whitening filter matrices H; and H, according to the relations

1,171, (19.4-11a)

81

[H,1 1, (m, n) (19.4-11b)

g,(m, n)

where H; and H, are obtained by factorization of the image covariance matrices

K; = HyH, (19.4-12a)
K, = H,H," (19.4-12b)
The factorization matrices may be expressed as

H, = E,[A,17° (19.4-13a)

172
1

H, (19.4-13b)

Ey[A,

where E¢ and E, contain eigenvectors of K; and K, respectively, and A; and A,
are diagonal matrices of the corresponding eigenvalues of the covariance matrices.

The statistical correlation function can then be obtained by the normalized inner-
product computation
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T
g18,(m, n)

Ry(m, n) = (19.4-14)

1/2 1/2
lgig ] Tga(m mgy(m, )]

Computation of the statistical correlation function requires calculation of two sets of
eigenvectors and eigenvalues of the covariance matrices of the two images to be
registered. If the window area contains P - Q pixels, the covariance matrices K; and
K, will each be (P- Q) x (P - Q) matrices. For example, if P = Q = 16, the covari-
ance matrices K; and K, are each of dimension 256 x256. Computation of the
eigenvectors and eigenvalues of such large matrices is numerically difficult. How-
ever, in special cases, the computation can be simplified appreciably (14). For
example, if the images are modeled as separable Markov process sources and there
is no observation noise, the convolution operators of Eq. 19.5-9 reduce to the statis-
tical mask operator

2

2 2
p -p(l+p) p

1

= 2 2,2 2
! 22| =p(l+p7) (1+p7) —p(l+p7)
(L+p") ) 5

2
p -p(1+p7) p

(19.4-15)

where p denotes the adjacent pixel correlation (18). If the images are spatially
uncorrelated, then p = 0, and the correlation operation is not required. At the other
extreme, if p =1, then

1 -2 1
1
D=7l 4 =2 (19.4-16)
1 =2 1

This operator is an orthonormally scaled version of the cross second derivative spot
detection operator of Eq. 15.7-3. In general, when an image is highly spatially
correlated, the statistical correlation operators D; produce outputs that are large in
magnitude only in regions of an image for which its amplitude changes significantly
in both coordinate directions simultaneously.

Figure 19.4-3 provides computer simulation results of the performance of the
statistical correlation measure for registration of the toy tank image of Figure
17.1-6b. In the simulation, the reference image F,(j, k) has been spatially offset hor-
izontally by three pixels and vertically by four pixels to produce the translated image
F,(j, k). The pair of images has then been correlated in a window area of 16X 16
pixels over a search area of 32 x 32 pixels. The curves in Figure 19.4-3 represent the
normalized statistical correlation measure taken through the peak of the correlation
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FIGURE 19.4-3. Statistical correlation misregistration detection.

function. It should be noted that for p = 0, corresponding to the basic correlation
measure, it is relatively difficult to distinguish the peak of R¢(m, n). For p = 0.9 or
greater, R(m, n) peaks sharply at the correct point.

The correlation function methods of translation offset detection defined by Eqs.
19.4-2 and 19.4-9 are capable of estimating any translation offset to an accuracy of
% pixel. It is possible to improve the accuracy of these methods to subpixel levels
by interpolation techniques (19). One approach (20) is to spatially interpolate the
correlation function and then search for the peak of the interpolated correlation
function. Another approach is to spatially interpolate each of the pair of images and
then correlate the higher-resolution pair.

A common criticism of the correlation function method of image registration is
the great amount of computation that must be performed if the template region and
the search areas are large. Several computational methods that attempt to overcome
this problem are presented next.

Two-State Methods. Rosenfeld and Vandenburg (21,22) have proposed two effi-
cient two-stage methods of translation offset detection. In one of the methods, called
coarse—fine matching, each of the pair of images is reduced in resolution by conven-
tional techniques (low-pass filtering followed by subsampling) to produce coarse
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representations of the images. Then the coarse images are correlated and the result-
ing correlation peak is determined. The correlation peak provides a rough estimate
of the translation offset, which is then used to define a spatially restricted search
area for correlation at the fine resolution of the original image pair. The other
method, suggested by Vandenburg and Rosenfeld (22), is to use a subset of the pix-
els within the window area to compute the correlation function in the first stage of
the two-stage process. This can be accomplished by restricting the size of the win-
dow area or by performing subsampling of the images within the window area.
Goshtasby et al. (23) have proposed random rather than deterministic subsampling.
The second stage of the process is the same as that of the coarse—fine method; corre-
lation is performed over the full window at fine resolution. Two-stage methods can
provide a significant reduction in computation, but they can produce false results.

Sequential Search Method. With the correlation measure techniques, no decision
can be made until the correlation array is computed for all (m, n) elements. Further-
more, the amount of computation of the correlation array is the same for all degrees
of misregistration. These deficiencies of the standard correlation measures have led
to the search for efficient sequential search algorithms.

An efficient sequential search method has been proposed by Barnea and Silver-
man (24). The basic form of this algorithm is deceptively simple. The absolute value
difference error

Eg = 3,3 |F1G. K~ Fy = m, k)| (19.4-17)
ik

is accumulated for pixel values in a window area. If the error exceeds a predeter-
mined threshold value before all P- Q pixels in the window area are examined, it is
assumed that the test has failed for the particular offset (m, n), and a new offset is
checked. If the error grows slowly, the number of pixels examined when the thresh-
old is finally exceeded is recorded as a rating of the test offset. Eventually, when all
test offsets have been examined, the offset with the largest rating is assumed to be
the proper misregistration offset.

Phase Correlation Method. Consider a pair of continuous domain images

Fy(x,y) = Fi(x—x,,y-¥,) (19.4-18)

that are translated by an offset (x,,y,) with respect to one another. By the Fourier
transform shift property of Eq. 1.3-13a, the Fourier transforms of the images are
related by

(o, (ny) = F(o, (oy) exp{—i((oxx0+(ny )1 (19.4-19)
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The exponential phase shift factor can be computed by the cross-power spectrum
(25) of the two images as given by

R0, 0) 7 (0,0)
B |70, 0) Ko, )

G(w, ©,)

= exp{i((oh)c0+(nyy0)} (19.4-20)
Taking the inverse Fourier transform of Eq. 19.4-20 yields the spatial offset
G(x,y) = 8(x-x,y-y,) (19.4-21)

in the space domain.

The cross-power spectrum approach can be applied to discrete images by utiliz-
ing discrete Fourier transforms in place of the continuous Fourier transforms in Eq.
19.4-20. However, care must be taken to prevent wraparound error. Figure 19.4-4
presents an example of translational misregistration detection using the phase corre-
lation method. Figure 19.4-4a and b show translated portions of a scene embedded
in a zero background. The scene in Figure 19.4-4a was obtained by extracting the
first 480 rows and columns of the 500 x 500 washington ir source image. The
scene in Figure 19.4-4b consists of the last 480 rows and columns of the source
image. Figure 19.4-4¢ and d are the logarithm magnitudes of the Fourier transforms
of the two images, and Figure 19.4-4¢ is inverse Fourier transform of the cross-
power spectrum of the pair of images. The bright pixel in the upper left corner of
Figure 19.4-4e, located at coordinate (20,20), is the correlation peak.

19.4.2. Scale and Rotation Misregistration Detection

The phase correlation method for translational misregistration detection has been
extended to scale and rotation misregistration detection (25,26). Consider a a pair of
images in which a second image is translated by an offset (x_,y,) and rotated by an
angle 6, with respect to the first image. Then

F,y(x,y) = Fy(xcos®, +ysin®, —x ,—xsinB +ycos® —y) (19.4-22)

Taking Fourier transforms of both sides of Eq. 19.4-22, one obtains the relationship
(25)

fz(mx,my) = ?l(mxcoseo+(oysineo,—(oxsineo+(oycoseo)exp{—i((oxx0+my 21

(19.4-23)
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(@) Embedded image 1 (b) Embedded image 2

(c) Log magnitude of Fourier (d) Log magnitude of Fourier
transform of image 1 transform of image 1

(e) Phase correlation spatial array

FIGURE 19.4-4. Translational misregistration detection on the washington irl and
washington ir2 images using the phase correlation method. See white pixel in upper left
corner of (e).
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The rotation component can be isolated by taking the magnitudes #,(®,, ®,) and
My(o,, ©,) of both sides of Eq. 19.4-19. By representing the frequency variables in
polar form,

My(p,0) = M(p,0-6,) (19.4-24)

the phase correlation method can be used to determine the rotation angle 8.
If a second image is a size-scaled version of a first image with scale factors (a, b),
then from the Fourier transform scaling property of Eq. 1.3-12,

_ 1 o, o, )
Iy, ®,) = mﬁ(;, 7) (19.4-25)

By converting the frequency variables to a logarithmic scale, scaling can be con-
verted to a translational movement. Then

L

F,(log ®,, log (ny) = b

F;(log o, - loga, log ®, —log b) (19.4-26)

Now, the phase correlation method can be applied to determine the unknown scale
factors (a,b).

19.4.3. Generalized Misregistration Detection

The basic correlation concept for translational misregistration detection can be gen-
eralized, in principle, to accommodate rotation and size scaling. As an illustrative
example, consider an observed image F,(j, k) that is an exact replica of a reference
image F(j, k) except thatitis rotated by an unknown angle 6 measured in a clock-
wise direction about the common center of both images. Figure 19.4-5 illustrates the
geometry of the example. Now suppose that F,(j, k) is rotated by a trial angle 8,
measured in a counterclockwise direction and that it is resampled with appropriate
interpolation. Let F,(7, k; 6,) denote the trial rotated version of F,(j, k). This proce-
dure is then repeated for a set of angles 6, <6<6, expected to span the unknown
angle 8 in the reverse direction. The normalized correlation function can then be
expressed as

D FLRF (G ki)
j k

[Z;m Ui k)]z]m[z;wj, knr]”

J J

R(r) = (19.4-27)
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FIGURE 19.4-5 Rotational misregistration detection.

for r =1, 2,..., R. Searching for the peak of R(r) leads to an estimate of the
unknown rotation angle 6. The procedure does, of course, require a significant
amount of computation because of the need to resample F,(j, k) for each trial rota-
tion angle 8,.

The rotational misregistration example of Figure 19.4-5 is based on the simplify-
ing assumption that the center of rotation is known. If it is not, then to extend the
correlation function concept, it is necessary to translate F,(j, k) to a trial translation
coordinate (j,, k,), rotate that image by a trial angle 6, , and translate that image to
the translation coordinate (—jp, —kq). This results in a trial image F,(/, k;jp, kq, 6,),
which is used to compute one term of a three-dimensional correlation function
R(p, g, r), the peak of which leads to an estimate of the unknown translation and
rotation. Clearly, this procedure is computationally intensive.

It is possible to apply the correlation concept to determine unknown row and col-
umn size scaling factors between a pair of images. The straightforward extension
requires the computation of a two-dimensional correlation function. If all five
misregistration parameters are unknown, then again, in principle, a five-dimensional
correlation function can be computed to determine an estimate of the unknown
parameters. This formidable computational task is further complicated by the fact
that, as noted in Section 13.1, the order of the geometric manipulations is important.

The complexity and computational load of the correlation function method of
misregistration detection for combined translation, rotation, and size scaling can be
reduced significantly by a procedure in which the misregistration of only a few cho-
sen common points between a pair of images is determined. This procedure, called
control point detection, can be applied to the general rubber-sheet warping problem.
A few pixels that represent unique points on objects within the pair of images are
identified, and their coordinates are recorded to be used in the spatial warping map-
ping process described in Eq. 13.2-3. The trick, of course, is to accurately identify
and measure the control points. It is desirable to locate object features that are rea-
sonably invariant to small-scale geometric transformations. One such set of features
are Hu's (27) seven invariant moments defined by Eqs. 18.3-27. Wong and Hall (28)



