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Abstract

Large-scale workflows for big data analytics have become a main consumer of energy in data cen-

ters where moldable parallel computing models such as MapReduce are widely applied to meet high

computational demands with time-varying computing resources. The granularity of task partition-

ing in each moldable job of such big data workflows has a significant impact on energy efficiency,

which remains largely unexplored. In this paper, we analyze the properties of moldable jobs and

formulate a workflow mapping problem to minimize the dynamic energy consumption of a given

workflow request under a deadline constraint in big data systems. Since this problem is strongly

NP-hard, we design a fully polynomial-time approximation scheme (FPTAS) for a special case

with a pipeline-structured workflow on a homogeneous cluster and a heuristic for the generalized

problem with an arbitrary workflow on a heterogeneous cluster. The performance superiority of

the proposed solution in terms of dynamic energy saving and deadline missing rate is illustrated

by extensive simulation results in comparison with existing algorithms, and further validated by

real-life workflow implementation and experimental results in Hadoop/YARN systems.
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Introduction

Next-generation applications in science, industry, and business domains are producing colossal

amounts of data, now frequently termed as “big data”, which must be analyzed in a timely manner

for knowledge discovery and technological innovation. Among many practical computing solutions,
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workflows have been increasingly employed as an important technique for big data analytics, and5

consequently such big data workflows have become a main consumer of energy in data centers. Most

existing efforts on green computing were focused on independent MapReduce jobs and traditional

workflows comprised of serial/rigid programs. Energy efficiency of large-scale workflows in big data

systems such as Hadoop still remains largely unexplored.

Modern computing systems achieve energy saving mainly through two types of techniques, i.e.10

task consolidation to reduce static energy consumption (SEC) by turning off idle servers, and load

balancing to reduce dynamic energy consumption (DEC) through dynamic voltage and frequency

scaling (DVFS), or a combination of both. However, these techniques are not sufficient to address

the energy efficiency issue of big data workflows because i) frequently switching on and off a server

may reduce its lifespan or cause unnecessary peaks of power consumption, and ii) DVFS may not15

be always available on all servers in a cluster. Therefore, we direct our efforts to workflow mapping

for dynamic energy saving by adaptively determining the degree of parallelism in each MapReduce

job to mitigate the workload overhead while meeting a given performance requirement.

Parallel jobs are generally categorized into three classes with flexibility from low to high: rigid

jobs exemplified by multi-threaded programs running on a fixed number of processors, moldable20

jobs exemplified by MapReduce programs running on any number of processors decided prior to

execution, and malleable jobs running on a variable number of processors at runtime [2]. A moldable

job typically follows a performance model where the workload of each component task decreases and

the total workload, proportional to DEC, increases as the number of allotted processors increases [3].

The validity of this model has been verified by many real-life parallel programs in various big data25

domains and will serve as a base of our workflow mapping solution for energy saving of big data

workflows.

In this paper, we construct analytical cost models and formulate a workflow mapping problem to

minimize the DEC of a workflow under deadline and resource constraints in a Hadoop cluster. This

problem is strongly NP-hard because a subproblem to minimize the makespan of independent jobs30

on identical machines under a single resource constraint without considering energy cost has been

proved to be strongly NP-hard [4]. In our problem, it is challenging to balance the trade-off between

energy cost and execution time of each component job to determine their respective completion time

in MapReduce workflows, regardless of several previous efforts in traditional workflows, such as the

partial critical path and minimum dependency methods in [5, 6].35
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We start with a special case with a pipeline-structured workflow (a set of linearly arranged

jobs with a dependency between any two neighbors along the line) on a homogeneous cluster. We

prove this special case to be weakly NP-complete and design a fully polynomial-time approximation

scheme (FPTAS) of time complexity linear with respect to 1/ε. By leveraging the near optimality

and low time complexity of our FPTAS, we design a heuristic for the generalized problem with40

a directed acyclic graph (DAG)-structured workflow on a heterogeneous cluster. This heuristic

iteratively selects the longest chain of unmapped jobs from the workflow and applies our FPTAS

to the selected pipeline while taking machine heterogeneity into consideration.

In sum, our work makes the following contributions to the field.

• Our work validates with experimental results that the DEC of a moldable job increases with45

the number of parallel tasks, and to the best of our knowledge, is among the first to study

energy-efficient mapping of big data workflows comprised of moldable jobs in Hadoop systems.

• We prove a deadline-constrained pipeline-structured workflow mapping problem for minimum

total (energy) cost to be weakly NP-complete and design an FPTAS, whose performance is

illustrated through real-life workflow implementation and extensive experimental results using50

the Oozie workflow engine in Hadoop/YARN systems.

• The performance superiority of the proposed heuristic for the general workflow mapping

problem in terms of dynamic energy saving and deadline missing rate is illustrated by extensive

simulation results in Hadoop/YARN in comparison with existing algorithms.

The rest of the paper is organized as follows. Section 2 provides a survey of related work.55

Section 3 formulates a MapReduce workflow mapping problem. We prove a special case to be

weakly NP-complete and design an FPTAS for it in Section 4, and design a heuristic for the

generalized problem in Section 5. Section 6 evaluates the performance and Section 7 concludes our

work.

Related Work60

Energy efficiency in Hadoop Systems

Energy-efficient Data Placement

A large number of research efforts have been made to optimize the data replication scheme

in Hadoop distributed file system (HDFS) so that data nodes can be turned off without affecting

data availability. To allow scale-down of an operational Hadoop cluster, Leverich et al. introduced65
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the notion of a covering subset (CovSet) for HDFS, a small subset of machines, within which one

replica of every block is stored [7]. Lang et al. proposed the all-in strategy (AIS) that turns off all

servers for energy saving and turns on all servers to accommodate all tasks as fast as possible when

the task queue is large enough. They demonstrated the superiority of AIS compared to CovSet in

terms of response time and energy cost when the transition time of nodes to and from a low power70

state is relatively small compared with the total workload execution time [8]. Amur et al. proposed

to maintain the primary replica of each data block on the primary nodes that are always active

and store B/n secondary replicas on the n-th node on the expansion-chain (B is the total number

of replicas), which denotes the order in which nodes must be turned on/off to scale performance

up/down to support the equal-work layout for power-proportionality [9]. Chen et al. developed75

BEEMR, an energy-efficient MapReduce workload manager motivated by an empirical analysis of

real-life traces of MapReduce workloads from Facebook [10]. The key insight is that interactive

jobs often operate on a small fraction of data, and thus can be served by a small pool of dedicated

machines, while jobs that are less time sensitive can run in a batch manner on the rest of the

cluster. Energy savings come from aggregating the execution of less time-sensitive jobs in the batch80

zone to achieve high utilization, and transitioning idle machines in the batch zone to a low-power

state. These techniques showed dramatic improvements in energy saving at the file system level.

Our research on job scheduling is orthogonal to these efforts, and hence adds an additional level of

energy efficiency to Hadoop systems.

Energy-efficient MapReduce Job Scheduling85

Dynamic Voltage Frequency Scaling (DVFS): The DVFS technology has been widely adopted

for energy saving in computing systems. Bampis et al. focused on the minimization of the total

weighted completion time for a set of MapReduce jobs under a given energy constraint, and used a

linear programming relaxation method to derive a polynomial-time constant-factor approximation

algorithm [11].90

Heterogeneous Computing Environments: Since servers in large-scale clusters are typically up-

graded or replaced in an incremental manner, many techniques consider hardware heterogeneity of

Hadoop clusters for energy saving. Cardosa et al. proposed static virtual machine (VM) placement

algorithms to minimize the cumulative machine uptime of all physical machines (PMs), based on

two principles: spatial fitting of VMs on PMs to achieve high resource utilization according to95

complementary resource requirements from VMs, and temporal fitting of PMs with VMs having
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similar runtime to ensure that a server runs at a high utilization level throughout its uptime [12].

Mashayekhy et al. modeled the energy-aware static task scheduling of a MapReduce job as an

Integer Programming problem, and designed two heuristics that assign map/reduce tasks to ma-

chine slots to minimize energy consumption while satisfying the service level agreement (SLA) [13].100

Cheng et al. proposed a heterogeneity-aware dynamic task assignment approach using ant colony

optimization, referred to as E-Ant, to minimize the overall energy consumption of MapReduce ap-

plications with heterogeneous workloads in a heterogeneous Hadoop cluster without a priori knowl-

edge of workload properties [14]. The use of the ant colony algorithm in the Hadoop scheduler is

based on an assumption that there exist a large number of homogeneous tasks in a MapReduce105

job. However, an excessively large number of tasks in a parallel job may incur very high overhead

(compared with the payload itself), hence leading to a significant waste of energy and delaying the

job completion time.

Renewable Energy : Several efforts were focused on utilizing renewable energy in the operation

of Hadoop clusters. Goiri et al. proposed a framework, GreenHadoop, for a data center powered110

by renewable (green) energy and by carbon-intensive (brown) energy from the electrical grid as

a backup. It dynamically schedules MapReduce jobs to minimize brown energy consumption by

delaying background computations within their time bounds to match the green energy supply that

is not always available [15]. Cheng et al. designed a scheduler for a Hadoop cluster powered by mixed

brown and green energy, which dynamically determines resource allocation to heterogeneous jobs115

based on the estimation of job completion time and the prediction of future resource availability [16].

Despite the salient features for energy cost saving enabled by mixed energy supplies, at present there

is no mature technology to support seamless switch between green and brown energy supplies or

bring down the cost for storing renewable energy in such MapReduce frameworks.

Overhead Reduction: A few efforts were devoted to workload overhead reduction for energy120

saving. Sharma et al. designed a dynamic scheduler for interactive and batch MapReduce jobs in

hybrid physical and virtual environments to boost resource utilization and energy saving through

workload consolidation based on virtualization and avoid virtualization-incurred overhead by exe-

cuting “heavy” jobs immediately on PMs [17]. The majority of existing efforts targeted the first

generation of Hadoop. The work on the second generation of Hadoop, i.e. YARN, is still quite125

limited. Li et al. proposed a suspend-resume mechanism in YARN to mitigate the overhead of

preemption in cluster scheduling, and used a check pointing mechanism to save the states of jobs
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for resumption [18]. Their approach dynamically selects appropriate preemption mechanisms based

on the progress of a task and its suspend-resume overhead to improve job response time and re-

duce energy consumption. As opposed to preemptive scheduling of interactive applications in their130

work, our work is focused on energy saving in non-preemptive scheduling of MapReduce jobs in the

background.

Energy-efficient Workflow Scheduling

Many efforts were made on energy-efficient scheduling of workflows comprised of precedence-

constrained serial programs. Some of these approaches targeted virtualized environments [19] by135

migrating active VMs onto energy-efficient PMs in time [20] or consolidating applications with

complementary resource requirements [21]. Zhu et al. developed a workflow scheduling framework,

pSciMapper, which consists of two major components: i) online power-aware consolidation, based

on available information on the utilization of CPU, memory, disk, and network by each job, and ii)

offline analysis including a hidden Markov model for estimating resource usage per job and kernel140

canonical correlation analysis for modeling the resource-time and resource-power relationships [21].

Other approaches were focused on physical clusters as follows. Lee et al. proposed a static

workflow schedule compaction algorithm to consolidate the resource use of a workflow schedule

generated by any scheduling algorithm in homogeneous environments [22], and designed two static

energy-conscious workflow scheduling algorithms based on DVFS in heterogeneous distributed145

systems [23]. In [24], three types of DVFS-based heuristics, namely, prepower-determination,

postpower-determination, and hybrid algorithms, were designed to solve a static problem of joint

power allocation and workflow scheduling for schedule length (or energy consumption) minimiza-

tion under an energy constraint (or a time constraint). Zhang et al. proposed a DVFS-based

heuristic to statically maximize workflow reliability under a energy constraint in a heterogeneous150

cluster [25], and designed a Pareto-based bi-objective genetic algorithm to achieve low energy con-

sumption and high system reliability for static workflow scheduling [26]. Zotkiewicz et al. proposed a

communication-aware minimum-dependency energy-efficient DAG (MinD+ED) scheduling strategy

for SaaS applications in heterogeneous data centers, which statically determines virtual deadlines

of individual tasks by favoring tasks less dependent on others and then dynamically assigns tasks155

based on the load of network links and servers [6]. The above work only considers serial or rigid

jobs in workflows, while our work is focused on moldable jobs in big data computing systems.
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Malleable Job Scheduling

Some efforts have been made to minimize the completion time of a workflow comprised of

malleable jobs [27, 28, 29], but there exist relatively limited efforts on moldable/malleable job160

scheduling for energy efficiency. Sanders et al. designed a polynomial-time optimal solution and

an FPTAS to statically schedule independent malleable jobs with a common deadline for energy

consumption minimization based on the theoretical power models of a single processor using the

DVFS technology, i.e. p = fα and p = fα + δ, respectively, where f is CPU frequency and δ

is the constant static power consumption [30]. Different from these theoretical models, our work165

employs measurement-based power consumption models and performs workflow mapping to reduce

the computing overhead and thus improve the energy efficiency of big data workflows. To the best of

our knowledge, our work is among the first to study energy-efficient mapping of big data workflows

comprised of moldable jobs in Hadoop systems.

Problem Formulation170

Cost Models

Cluster Model

We consider a heterogeneous Hadoop cluster consisting of a set M of machines connected via

high-speed switches, which can be partitioned into homogeneous sub-clusters {Cl}. Each machine

mi is equipped with Ni homogeneous CPU cores of speed pi and a shared memory of size oi. For175

the entire cluster, a central scheduler maintains an available resource-time (ART) table R, which

records the number NA
i (t) ≤ Ni of idle CPU cores and the size oAi (t) ≤ oi of available memory in

each machine mi at time t.

Workflow Model

We consider a user request in the form of a workflow f(G, d), which specifies a workflow structure180

G and a deadline d. The workflow structure is defined as a DAG G(V,A), where each vertex vj ∈ V

represents a component job, and each directed edge aj,j′ ∈ A denotes an execution dependency, i.e.

the actual finish time (AFT) tAFj of job vj must not be later than the actual start time (AST) tASj′

of job vj′ . The completion time of the workflow is denoted as tC . We consider the map and reduce

phases of each MapReduce job as two component jobs connected via an execution dependency edge.185
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MapReduce Model

We consider a MapReduce job vj running a set of parallel map (or reduce) tasks, each of which

requires a memory of size oj and spends a percentage µi,j of time executing CPU-bound instructions

on a CPU core of machine mi and a percentage (1−µi,j) of time executing I/O-bound instructions

on machine mi. In job vj , generally, as the number Kj of parallel tasks increases, the workload190

wj,k(Kj) of each task sj,k decreases and the total workload wj(Kj) = Kj · wj,k(Kj) of all tasks

increases. However, the maximum number K ′j of tasks that can be executed in parallel without

performance degradation is limited by the cluster capacity, e.g. K ′j ≤
∑
mi∈M min{Ni, boi/ojc}.

Note that a serial program can be considered as a special case of a MapReduce job with K ′j = 1. The

execution time of task sj,k on machine mi is ti,j,k = wj,k(Kj)/(µi,j · pi). Estimating the execution195

time of a task on any service is an important issue. Many techniques have been proposed such as

code analysis, analytical benchmarking/code profiling, and statistical prediction [31, 32], which are

beyond the scope of this paper.

The active state ai,j,k(t) of task sj,k on machine mi is 1 (or 0) if it is active (or inactive) at time

t. The number of active tasks in job vj on machine mi at time t is ni,j(t) =
∑
sj,k∈vj ai,j,k(t). The200

number of CPU cores and the size of memory used by all component jobs of a workflow on machine

mi at time t are ni(t) =
∑
vj∈V ni,j(t) and oi(t) =

∑
vj∈V [ojni,j(t)], respectively.

Energy Model

The DEC of a workflow in a cluster is E =
∑
mi∈M {Pi

∑
vj∈V [µi,j

∫ tC
0
ni,j(t)dt]}, where Pi is

the dynamic power consumption (DPC) of a fully utilized CPU core, and which is validated by205

energy measurements of practical systems in [14].

Mapping Function

We define a workflow mapping function as M : {sk(vj)
[tSj,k, t

E
j,k]

======⇒ mi,∀vj ∈ V,∃mi ∈M, ∃[tSj,k, tFj,k]

⊂ T}, which denotes that the k-th task of the j-th job is mapped onto the i-th machine from time

tSj,k to time tEj,k. The domain of this mapping function spans across all possible combinations of a210

set V of component jobs of the workflow, a set M of machines, and a time period T of workflow

execution.

Problem Definition

We formulate a deadline- and resource-constrained workflow mapping problem for energy effi-

ciency (EEWM):215
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Table 1: Notations used in the cost models.
Notations Definitions

M =
⋃

l Cl a cluster of machines divided into homogeneous subclusters {Cl}

mi(Ni, pi, oi, Pi) the i-th machine equipped with a memory of size oi and Ni CPU cores of speed pi and DPC Pi

per core at full utilization

R the available resource-time table of cluster M

NA
i (t) the number of idle CPU cores on machine mi at time t

oAi (t) the size of available memory on machine mi at time t

f(G(V,A), d) a workflow request consisting of a workflow structure of a DAG G(V,A) and a deadline d

vj , sj,k the j-th component job in a workflow and the k-th task in job vj

aj,j′ the directed edge from job vj to job vj′

tAS
j , tAF

j the actual start and finish time of job vj

tC the completion time of a workflow

µi,j the percentage of execution time for CPU-bound instructions in job vj on machine mi

oj the memory demand per task in job vj

wj(K) the workload of job vj partitioned into K tasks

wj,k(K) the workload of task sj,k in vj with K tasks

Kj , K′
j the number and the maximum possible number of tasks in vj

ti,j,k the execution time of task sj,k running on machine mi

ai,j,k(t) indicate whether task sj,k is active on machine mi at time t

ni,j(t) the number of running tasks in job vj on machine mi at time t

ni(t) the number of CPU cores used by f on machine mi at time t

oi(t) the size of memory used by workflow f on machine mi at time t

E the DEC of workflow f in cluster M

Definition 1. EEWM: Given a cluster {mi(Ni, pi, oi, Pi)} of machines with an available resource-

time table {NA
i (t), oAi (t)}, and a workflow request f(G(V,A), d), where each job vj has a set

{wj(Kj)|Kj = 1, 2, . . . ,K ′j} of workloads for different task partitions, and each task in job vj

has a percentage µi,j of execution time for CPU-bound instructions on machine mi and a memory

demand oj, we wish to find a mapping function M : (V,M, T )→ {sk(vj)
[tSj,k, t

E
j,k]

======⇒ mi} to minimize

the dynamic energy consumption:

min
M

E,

subject to the following time and resource constraints:

tC ≤ d,

tAFj ≤ tASj′ ,∀aj,j′ ∈ A,

ni(t) ≤ NA
i (t),∀mi ∈M,

oi(t) ≤ oAi (t),∀mi ∈M.
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Complexity Analysis

We first consider a special case of EEWM with a sufficiently large upper bound on dynamic

energy consumption as follows: given 5 machines with sufficient memory and a single CPU core

of speed p and DPC Pi at full utilization, and J independent serial jobs {vj} with CPU-burst

workload wj , does there exist a feasible non-preemptive scheduling scheme such that the makespan220

is no more than d? This special case has been proved to be strongly NP-hard in [4], so is the general

EEWM problem, which, with a polynomially bounded objective function, has no FPTAS unless

P = NP [33].

Special Case: Pipeline-structured Workflow

We start with a special case with a Pipelined-structured workflow running on HOmogeneous225

machines (PHO). We prove it to be NP-complete and design an FPTAS to solve EEWM-PHO.

Generally, we may achieve more energy savings on an under-utilized cluster than on a fully-

utilized cluster. Hence, the problem for a single pipeline-structured workflow is still valuable in

real-life systems. The EEWM-PHO problem is defined as follows.

Definition 2. EEWM-PHO: Given I idle homogeneous machines {mi(N, p, o, P )} and a work-230

flow f(G(V,A), d) containing a chain of J jobs, where each job vj has a workload list {wj(Kj)|Kj =

1, 2, . . . ,K ′j}, and each task in job vj has a percentage µj of execution time for CPU-bound instruc-

tions and a memory demand oj, does there exist a feasible mapping scheme such that DEC is no

more than E?

Complexity Analysis235

We prove that EEWM-PHO is NP-complete by reducing the two-choice knapsack problem

(TCKP) to it.

Definition 3. Two-Choice Knapsack: Given J classes of items to pack in a knapsack of capacity

H, where each class Cj (j = 1, 2, . . . , J) has two items and each item rj,l (l = 1, 2) has a value bj,l

and a weight hj,l, is there a choice of exactly one item from each class such that the total value is240

no less than B and the total weight does not exceed H?

The knapsack problem is a special case of TCKP when we put each item in the knapsack problem

and a dummy item with zero value and zero weight together into a class. Since the knapsack problem

is NP-complete, so is TCKP.

Theorem 1. EEWM-PHO is NP-complete.245
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Proof. Obviously, EEWM-PHO ∈ NP . We prove that EEWM-PHO is NP-hard by reducing TCKP

to EEWM-PHO. Let ({Cj(bj,1, hj,1, bj,2, hj,2)|1 ≤ j ≤ J}, B,H) be an instance of TCKP. Without

loss of generality, we assume that bj,1 > bj,2 and hj,1 > hj,2 > 0. If hj,1 < hj,2, rj,1 would always

be selected. If hj,2 = 0, we can always add τ > 0 to hj,1, hj,2 and H such that hj,2 > 0.

We construct an instance of EEWM-PHO as follows. Let I = 2, d = H, vj = Cj , K
′
j = 2,250

oj = o, wj(1) = hj,1µjp, wj(2) = 2hj,2µjp, uj = (Bj − bj,1)/(hj,1P ) and E =
∑

1≤j≤J Bj − B,

where Bj = (2hj,2bj,1 − hj,1bj,2)/(2hj,2 − hj,1). This process can be done in polynomial time.

Then, if job vj only has one task, its execution time is tj(1) = wj(1)/(µjp) = hj,1, and its

DEC is Ej(1) = tj(1)µjP = Bj − bj,1. If job vj has two tasks, the execution time of each task is

tj(2) = wj(2)/(2µjp) = hj,2, and the DEC of job vj is Ej(2) = 2tj(2)µjP = Bj − bj,2. Obviously,255

two tasks in a job are mapped onto two machines simultaneously.

As a result,
∑

1≤j≤J tj(Kj) =
∑

1≤j≤J hj,Kj
, which means

∑
1≤j≤J tj(Kj) ≤ d⇔

∑
1≤j≤J hj,Kj

≤

H. Similarly,
∑

1≤j≤J Ej(Kj) =
∑

1≤j≤J (Bj − bj,Kj ) =
∑

1≤j≤J Bj −
∑

1≤j≤J bj,Kj
= E + B −∑

1≤j≤J bj,Kj , which means that
∑

1≤j≤J Ej(Kj) ≤ E ⇔
∑

1≤j≤J bj,Kj ≥ B. Therefore, if the

answer to the given instance of TCKP is Yes (or No), the answer to the constructed instance of260

EEWM-IJOM is also Yes (or No). Proof ends.

Approximation Algorithm

We prove that EEWM-PHO is weakly NP-complete and design an FPTAS as shown in Alg. 1 by

reducing this problem to the weakly NP-complete restricted shortest path (RSP) problem, which

can then be solved using an FPTAS proposed in [34].265

Given an instance of EEWM-PHO, we construct an instance of RSP according to the pipeline-

structured workflow as follows. As illustrated in Fig. 1, the network graph G consists of V =

{vj,k|j = 1, . . . , J, k = 1, . . . ,K ′j}∪{u0, uj |j = 1, . . . , J} with a source u0 and a destination uJ , and

E = {e2j−1,k, e2j,k|j = 1, . . . , J, k = 1, . . . ,K ′j}, where e2j−1,k = (uj−1, vj,k) and e2j,k = (vj,k, uj).

Then, we calculate the execution time of job vj with k tasks as tj(k) = wj(k)/(k · p · µj), and270

accordingly its DEC as Ej(k) = k · P · µj · tj(k). Subsequently, we assign the cost c(e) and delay

l(e) of each edge e ∈ E as c(e2j−1,k) = Ej(k), l(e2j−1,k) = tj(k), and c(e2j,k) = l(e2j,k) = 0, and

set the delay constraint on a path from u0 to uJ to be d. As a result, the minimum cost in RSP

is exactly the minimum DEC in EEWM-PHO, and if vj,k is on the solution path to RSP, the j-th

job has k tasks. Based on Theorem 1 and the above reduction, we have275
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Figure 1: A constructed network corresponding to a workflow with a pipeline structure.

Algorithm 1: EEWM-PHO-FPTAS

Input: A cluster {mi(N, p, o, P )} and a chain of jobs {vj} with a deadline d and a set {wj(Kj)} of

workloads

1: Construct a DAG G(V,E) for pipeline {vj} as shown in Fig. 1, and assign energy cost Ej(k) and delay

tj(k) to edge e2j−1,k and zero cost and zero delay to edge e2j,k;

2: Use FPTAS in [34] to find the minimum-cost path from u0 to uJ under delay constraint d with

approximate rate (1 + ε) and convert it to mapping scheme.

Theorem 2. EEWM-PHO is weakly NP-complete.

Let K ′ = max1≤j≤J K
′
j . Then, |V| ≤ JK ′+J+1 and |E| ≤ 2JK ′ in the constructed graph G. It

is obvious that the construction process can be done within time O(JK ′). Therefore, EEWM-PHO

finds a feasible solution that consumes energy within the least DEC multiplied by (1 + ε) in time

O(J2K ′2/ε) if the FPTAS in [34] is used to solve RSP in acyclic graphs. Thanks to the special280

topology in Fig. 1, the time complexity is further reduced to O(JK ′(logK ′ + 1/ε)).

Algorithm Design for an Arbitrary Workflow on a Heterogeneous Cluster

We consider EEWM with a DAG-structured workflow on a heterogeneous cluster and design

a heuristic algorithm, referred to as big-data adaptive workflow mapping for energy efficiency

(BAWMEE).285
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An Overview of BAWMEE

The key idea of BAWMEE is to partition a DAG into a set of pipelines and then repeatedly

employ Alg. 1 with near optimality and low time complexity to achieve energy-efficient mapping of

each pipeline.

In BAWMEE, each workflow mapping consists of two components: iterative critical path (CP)290

selection and pipeline mapping. A CP is the longest execution path in a workflow, which can be

calculated in linear time. The algorithm starts with computing an initial CP according to the

average execution time of each job running in serial on all the machines, followed by a pipeline

mapping process. Then, it iteratively computes a CP with the earliest last finish time (LFT) from

the remaining unmapped workflow branches based on the same average execution time of a job as295

above and performs a pipeline mapping of the computed CP until there are no branches left.

In pipeline mapping, we consider two extreme scenarios: resource/time sufficiency and re-

source/time insufficiency. In the former case, we only need to focus on energy efficiency, while

in the latter case, it may be unlikely to meet the performance requirement. Therefore, we design

one algorithm for each of these two scenarios: a heuristic for energy-efficient pipeline mapping300

(EEPM) under a deadline constraint in Alg. 3, which calls Alg. 1, and a heuristic for minimum

delay pipeline mapping (MDPM) with energy awareness in Alg. 4. If Alg. 3 fails to find a feasible

mapping scheme due to limited resources, we resort to Alg. 4. In EEPM, due to the homogeneity

of tasks in a job, we map all the tasks in the same job onto a homogeneous sub-cluster, hence using

Alg. 1 to balance the trade-off between execution time and DEC (directly associated with total305

workload) for each job on a pipeline. In MDPM, we search for a good task partitioning to minimize

the end time of each job through a limited number of tries by reducing the possible number of tasks

in each job vj from {1, 2, 3, . . . ,K ′j} to {1, 2, 22, . . . , 2blogK′
jc} ∪ {K ′j}.

Algorithm Description

If a job vj has been mapped, it has AST tASj and AFT tAFj . If all the preceding (and succeeding)

jobs, in Prec (and Succ), of job vj are mapped, its earliest start time (EST) (and LFT) can be

calculated as

tESj =


0, if vj is the start job of workflow f,

max
vj′∈Prec(vj)

tAFj′ , otherwise;
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Table 2: Time-Energy Table Tblj of Job vj .

tj(Kj,1, Cj,1) < tj(Kj,2, Cj,2) < . . . < tj(Kj,n, Cj,n)

Ej(Kj,1, Cj,1) > Ej(Kj,2, Cj,2) > . . . > Ej(Kj,nCj,n)

Kj,1 ∈ [1, K′
j ] Kj,2 ∈ [1, K′

j ] . . . Kj,n ∈ [1, K′
j ]

Cj,1 ⊂M Cj,2 ⊂M . . . Cj,n ⊂M

and

tLFj =


d, if vj is the end job of workflow f,

min
vj′∈Succ(vj)

tASj′ , otherwise,

respectively. If there exist unmapped preceding and succeeding jobs of vj , its temporary earliest310

start time (TEST) t′ES(vj) and temporary last finish time (TLFT) t′LF (vj) can be calculated based

on only its mapped preceding and succeeding jobs, respectively. The EST and LFT of a pipeline

are the EST of its first job and LFT of its end job, respectively.

Each job vj is associated with a set of pairs of the number Kj,n of tasks and the used homoge-

neous sub-cluster Cj,n. Each pair corresponds to a certain execution time tj(Kj,n, Cj,n) and DEC315

Ej(Kj,n, Cj,n) = P (Cj,n)wj(Kj,n)/p(Cj,n), where p(Cj,n) and P (Cj,n) are the speed and the DPC

of a fully utilized CPU core on a machine in Cj,n, respectively, and wj(Kj,n) is the workload of vj

with Kj,n tasks. All the quadruples {(tj(Kj,n, Cj,n), Ej(Kj,n, Cj,n),Kj,n, Cj,n)} are sorted in the

ascending order of execution time as listed in Table 2, and are referred to as the time-energy table

(TET) Tblj of job vj . Any quadruple with both execution time and DEC larger (worse) than those320

of another will be deleted from Tblj .

In Alg. 2, BAWMEE first builds a time-energy table for each job by calling buildTET ()

(in Line 1). If the workflow cannot meet its deadline with each job running the fastest, BAWMEE

performs energy-aware job mapping (EAJM) with minimum finish time for each job in a topolog-

ically sorted order by calling simplyMap() (in Line 2). Otherwise, BAWMEE employs iterative325

CP selection to find a CP with the earliest LFT from unmapped jobs (in Line 8), and performs

EEPM or MDPM (if EEPM fails) for the selected CP (in Lines 9-10), where EEPM and MDPM

are described later in Algs. 3 and 4, respectively. If there is any job that cannot be mapped in

MDPM, we cancel the mapping of its downstream jobs (in Lines 11-14). If it is the last job of the

workflow, we perform EAJM with minimum finish time (in Lines 15-16).330

In Alg. 3 of EEPM, we reset the EST for the input pipeline according to the earliest time such

that enough resources are made available to the first job (in Lines 2-3). If the pipeline cannot meet

its LFT with each job running the fastest, we exit EEPM (in Lines 4-5); otherwise, the mapping of

14



Algorithm 2: BAWMEE

Input: a workflow f(G(V,A), d) and an ART table R for sub-clusters {Cl}

1: Tbl← buildTET (V, {Cl});

2: if simplyMap(f,R({Cl}), T bl) =True then

3: return .

4: tLF
j ← +∞ for ∀vj ∈ f ; tLF

J ← d for the end job vJ in f ;

5: Calculate the average execution time t̄j of each job vj running in serial on all the machines;

6: G′ ← G;

7: while ∃ an unmapped job ∈ V do

8: Find the critical path cp ending at a job v with the earliest LFT in G′ according to {t̄j |vj ∈ G′};

9: if EEPM(cp,R({Cl}), T bl) =False then

10: v ←MDPM(cp,R({Cl}));

11: if v 6= Null then

12: D ← {all the downstream jobs of v in G−G′};

13: if D 6= ∅ then

14: Cancel the mapping of each job v′ ∈ D, and add v′ and its associated precedence constraints

to G′;

15: if v is the last job of f then

16: EAJM(v,R({Cl});

17: G′ ← G′ − {vj ∈ cp|vj is mapped};

a pipeline with its EST and LFT is converted into the RSP problem with a relaxed resource limit

(in Line 6). Accordingly, we calculate the number of tasks, the sub-cluster, and the start/finish335

time for each job using Alg. 1 (in Line 7). Then, we check if the start and finish time of each job

are between its TEST and TLFT in their execution order (in Lines 8-9). If there exists a job that

violates the precedence constraint, we divide the pipeline at this job, and use Alg. 3 to compute

the mapping of the upstream sub-pipeline with an updated LFT constraint (in Lines 10-15). We

repeat this process until we find a sub-pipeline whose mapping meets all precedence constraints. If340

the cluster is able to provide each job in this sub-pipeline with enough computing resources based

on the mapping result of Alg. 1, we proceed with this mapping (in Lines 16-18); otherwise, we fail

to find an EEPM and thus exit (in Line 19). In this case, BAWMEE would proceed to search for

an MDPM.

15



Algorithm 3: EEPM

Input: a pipeline pl with its EST pl.est and LFT pl.lft, an ART table R({Cl}), and TETs {Tblj}

Output: a boolean variable to indicate whether pl or its part is mapped

1: Label the index j of each job in pl from 1 to the length of pl;

2: Calculate the earliest possible start time of the first job in pl on any machine as est according to

R({Cl});

3: pl.est← max{est, pl.est};

4: if
∑

vj∈pl tj(Kj,1, Cj,1) > pl.lft− pl.est then

5: return False.

6: Convert pipeline pl, where each quadruple in Tblj of each job vj ∈ pl corresponds to one of its

mapping options, into a network graph in RSP;

7: Use Alg. 1 to calculate the number Kj of tasks, sub-cluster C(vj), and start and finish time, tSj and

tFj , for each job vj ;

8: for vj+1 ∈ pl do

9: if tFj > t′LF (vj) or tFj < t′ES(vj+1) then

10: pl(1, j).est← pl.est;

11: if tFj > t′LF (vj) then

12: pl(1, j).lft← t′LF (vj);

13: else

14: pl(1, j).lft← min{t′ES(vj+1), t′LF (vj), pl.lft};

15: return EEPM(pl(1, j), R({Cl}), T bl);

16: if ∃ Kj pairs of a CPU core and memory of size oj in R(C(vj)) for ∀vj ∈ pl then

17: Map all Kj tasks onto C(vj) from tSj to tFj for ∀vj ∈ pl;

18: return True;

19: return False;

In Alg. 4 of MDPM, we search for the earliest finish time (EFT) of each job using EAJM in345

their execution order, and thus obtain the EFT of the entire pipeline. In Alg. 5 of EAJM with the

minimum finish time under resource constraints, we exponentially relax the limit on the maximum

number of tasks in a job to make a tradeoff between the optimality and the time complexity of

EAJM.

Since the calculation of the earliest possible start time of the first job in EEPM takes time of350

O(M ′H) and the pipeline mapping in EEPM takes time of O(JK ′L[log(K ′L)+1/ε]), the time com-
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Algorithm 4: MDPM

Input: a pipeline pl and an ART table R for {Cl}

Output: the first job that cannot be mapped

1: for all vj ∈ pl do

2: if EAJM(vj , R({Cl})) > t′LF (vj) then

3: Cancel the mapping of job vj ;

4: return vj ;

5: return Null.

Algorithm 5: EAJM

Input: a job vj and an ART table R for sub-clusters {Cl}

Output: the EFT tEF
j of job vj

1: Update the TEST t′ES(vj); tEF
j ← +∞;

2: for K ← 1, 2, 4, . . . 2blogK′
jc,K′j do

3: Calculate the EFT tEF
j (K) of job vj with K tasks by minimizing the finish time of each task one by

one;

4: if tEF
j > tEF

j (K) then

5: tEF
j ← tEF

j (K); Kj ← K;

6: Map job vj consisting of Kj tasks until tEF
j ;

7: return tEF
j .

plexity of EEPM is O(J2K ′L[log(K ′L)+1/ε]+M ′H). Since EAJM takes time of O(M ′HK ′ logK ′),

the time complexity of MDPM is O(M ′HJK ′ logK ′). Therefore, the time complexity of BAWMEE

is O(JK ′[JL(1/ε+log(K ′L))+M ′H logK ′]). Here, M ′ is the number of machines; L is the number

of homogeneous sub-clusters, J is the number of jobs; K ′ is the maximum number of tasks in a job;355

and H is the number of time slots in the ART table.

Numerical Examples

In this subsection, we use two simple examples to illustrate BAWMEE: one with sufficient

resource and time, and the other with insufficient resource and time.

The first example considers an idle cluster M = C1 ∪ C2 consisting of 4 single-core machines,360

where C1 = {m1,m2} and C2 = {m3,m4}, and receives a workflow f comprised of homogeneous

jobs organized in Fig. 2 with a deadline of 19 time units. The execution time and DEC of a
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Figure 2: An example of a workflow structure G.

Table 3: Time-Energy Table in Example 1

Time 3 2 5 4 2 3 5

Energy 6 8 5 8 ⇒ 8 6 5

# of Tasks 1 2 1 2 2 1 1

Sub-cluster C1 C1 C2 C2 C1 C1 C2

v1 v2

v4 v8

22

v3
44
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C1

C2

(b)

Figure 3: Workflow mapping in example 1: (a) BAWMEE; (b) Optimal.

job with a different task partitioning on a different sub-cluster are calculated and listed on the

left side of Table 3. BAWMEE first builds a TET for each job on the right side of Table 3. A

pipeline {v1, v2, v4, v6, v8} is selected as the initial CP. We assume that ε is set to be 0.02. In an365

approximation solution of pipeline mapping with EST of 0 and LFT of 19, each job has only one

task, and v1, v2 and v6 are mapped onto machine m1 in C1 from 0 to 3, from 3 to 6, and from 11 to

14, respectively, and v4 and v8 are mapped onto machine m3 in C2 from 6 to 11 and from 14 to 19,

respectively. Then, the second pipeline {v3, v5, v7} is selected as the CP in G − {v1, v2, v4, v6, v8}.

In an approximation solution of pipeline mapping with EST of 3 and LFT of 14, v3 intends to have370

one task and be mapped onto C2 from 3 to 8, and v5 and v7 intend to have one task and be mapped

onto C1 from 8 to 11 and from 11 to 14, respectively. Since v3 misses its TLFT of 6, the first sub-

pipeline {v3} of {v3, v5, v7} is extracted and the approximation solution of sub-pipeline mapping

with EST of 3 and LFT of 6 is that v3 has one task and is mapped onto a machine m2 in C1 from

3 to 6. Subsequently, the third pipeline {v5, v7} is selected as the CP in G− {v1, v2, v3, v4, v6, v8},375

and the approximation solution of its mapping with EST of 6 and LFT of 14 is that v5 intends to
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Figure 4: Example 2: (a) workflow structure; (b) workflow mapping.

Table 4: Time and Energy per Job in Example 2

Time 8 7 6 5 8 7 6 5

Energy 8 14 18 20 12 21 27 30

# of Tasks 1 2 3 4 1 2 3 4

Sub-cluster C1 C1 C1 C1 C2 C2 C2 C2

have one task and be mapped onto C2 from 6 to 9 and v7 intends to have one task and be mapped

onto C1 from 9 to 14. Since v7 starts before its TEST of 11, the first sub-pipeline {v5} of {v5, v7} is

extracted and the approximation mapping solution of the sub-pipeline with EST of 6 and LFT of

11 is that v5 has one task and is mapped onto a machine m4 in C2 from 6 to 11. Finally, the fourth380

pipeline {v7} is selected as the CP in G− {v1, v2, v3, v4, v5, v6, v8}, and the approximation solution

of its mapping with EST of 11 and LFT of 14 is that v7 has one task and is mapped onto machine

m2 in C2 from 11 to 14. Specifically, the mapping result of BAWMEE is shown in Fig. 3(a), and its

DEC is 45 units. The optimal mapping is shown in Fig. 3(b), and the minimum DEC is 44 units.

The second example considers a cluster M = C1 ∪ C2 consisting of 8 single-core machines,385

where C1 = {m1,m2,m3,m4} and C2 = {m5,m6,m7,m8}, and m3,m4,m7 and m8 are busy and

occupied by previous workflows. A user request specifies a workflow f comprised of homogeneous

jobs organized in Fig. 4(a) with a deadline of 15 time units. The execution time and DEC of a

job with a different task partitioning on a different sub-cluster are calculated and listed in Table 4.

A pipeline {v1, v2, v4} is selected as the initial CP. EEPM intends to perform pipeline mapping390

with EST of 0 and LFT of 15 by partitioning each job of v1, v2 and v4 into 4 tasks and mapping

them onto C1. However, C1 does not have enough resources to support this mapping. Due to the

failure of EEPM, MDPM attempts to partition each job into 1, 2, and 4 tasks to search for the

minimum completion time of each job one by one. As a result, v1, v2 and v4 are all partitioned
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into 4 tasks, and mapped onto m1, m2, m5 and m6 from 0 to 5, from 5 to 10, and from 10 to 15,395

respectively. Then, the second pipeline {v3} with EST of 5 and LFT of 10 is selected as the CP in

G − {v1, v2, v4}, but fails to be mapped during time window [5, 10] by EEPM and MDPM due to

insufficient resources. Hence, BAWMEE cancels the mapping of the downstream mapped job {v4}

of v3, which is the first job that fails to be mapped before its TLFT of 10 by MDPM. Subsequently,

the third pipeline {v3, v4} with EST of 10 and LFT of 15 is selected as the CP in G−{v1, v2}, and400

fails to be mapped by EEPM. Thus, MDPM partitions v3 into 4 tasks and maps them onto M from

10 to 15, but does nothing for v4 due to missing its TLFT of 15. Finally, BAWMEE partitions the

end job v4 of the workflow into 4 tasks and maps them onto M from 15 to 20. Specifically, the

mapping result of BAWMEE is shown in Fig. 4(b), and its DEC is 176 units.

Performance Evaluation405

We conduct experiments to illustrate the effect of task partitioning on job workload and energy

consumption, and evaluate the performance of EEWM-PHO-FPTAS in a practical setting for the

special case of a pipeline-structured workflow on a homogeneous cluster in comparison with the de-

fault and optimal workflow mapping schemes. For the generalized problem, we conduct simulations

to evaluate the performance of BAWMEE in comparison with three existing algorithms adapted410

from different scenarios: i) EEDAW in Alg. 7 adapted from a MapReduce job scheduling algorithm

EEDAJ in Alg. 6 (integrated with the algorithms in [14] and [16]) by extending the progress estima-

tion of a MapReduce job to that of a workflow, ii) MinD+ED adapted from a workflow scheduling

algorithm with serial jobs in [6] by fixing the number of tasks in each MapReduce job and replacing

preemptive task scheduling with non-preemptive task scheduling, and iii) MinD+EEDAJ comprised415

of the MinD algorithm in [6] for determining the virtual deadline of each job in a workflow and

EEDAJ for scheduling MapReduce jobs onto energy-efficient machines before their virtual dead-

lines. In these three existing algorithms, we preset the number of tasks in each MapReduce job

to be the maximum number of tasks to illustrate the benefits brought forth by the adaptive task

partitioning strategy in our algorithm.420

Experimental Settings

We set up a small-scale homogeneous cluster comprised of two Dell servers, each of which is

equipped with 2 processors of Intel(R) Xeon(R) CPU E5-2630 v3 with 15MB cache and 6 cores

of 2.4GHz, 16GB 2133MHz DDR4 RDIMM ECC memory, and 256GB 2.5inch serial ATA solid
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Algorithm 6: EEDAJ()

Input: Unmapped jobs {v, d(v)} and an available resource-time table R for a cluster M

1: while QJ 6= ∅ do

2: v ← QJ .top(); // QJ is a priority queue of all ready jobs. The priority of each job v is based on its deadline

and execution progress, i.e. rank(v) = d(v)−
∑

s∈U(v) t̄(s), where U(v) is a set of all unmapped tasks in v,

and t̄(s) is the average execution time of task s on all machines.

3: if v is ready then

4: Select a task s from job v and estimate its expected finish time

d(s) = d(v)− [d(v)− tES(v)] · (|U(v)| − 1)/|v|, where |v| is the number of tasks in v;

5: Map task s to minimize incremental energy consumption before d(s) or to minimize finish time if the

former fails;

6: if s is the last task in v then

7: Update the AFT of v and the EST of all its succeeding jobs;

8: QJ .dequeue();

9: else

10: Sleep for a period ∆t; // ∆t = 6 seconds

High-speed

LAN

Servers
Dell Precision Rack 7910

Power Meter
HOBO Plug Load Data Logger - UX120-018

Figure 5: The experimental testbed for measuring energy consumption.

state drive. We install a power meter of 0.5% relative measurement errors with a measurement425

resolution of 1 watt, HOBO Plug Load Data Logger – UX120-018, to collect the active power/energy

consumption of the entire cluster in the testbed, as shown in Fig. 5. The initial measurement shows

that the total static power consumption of this mini-cluster in an idle state is 153.5 W on average.

On the cluster, we install Apache Hadoop 2.7.3 [35] and Oozie 4.3 [36], a workflow engine

that automatically dispatches each component MapReduce job in a workflow with its respective430

configuration once all its preceding jobs finish. According to our Hadoop configuration, at most 23

map tasks can run in parallel. We download the airline on-time performance dataset of 11.2 GB

for a period of 22 years (1987-2008) from the statistical computing website [37], and implement
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Algorithm 7: EEDAW()

Input: Unmapped workflows {f(G(V,A), d)} and an available resource-time table R for a cluster M

1: while QW 6= ∅ do

2: f ← QW .top(); // QW is a workflow priority queue. The priority of each workflow f is based on its

deadline d(f) and execution progress, i.e. rank(f) = d(f)−
∑

s∈U(f) t̄(s), where U(f) is a set of all

unmapped tasks in f , and t̄(s) is the average execution time of task s on all machines.

3: v ← QJ (f).first(); // The jobs in the job queue QJ (f) of workflow f follow a topological sorting.

4: Estimate the virtual deadline d(v) of job v by d(v) = tES(v) + [d(f)− tES(v)] · t̄(v)/[t̄(v) +
∑

vj∈D(v) t̄(vj)],

where t̄(v) =
∑

s∈v t̄(s).

5: if v is ready then

6: Select a task s from job v;

7: Map task s to minimize incremental energy consumption before d(v) or to minimize finish time if the

former fails;

8: if s is the last task in v then

9: Update the AFT of v and the EST of all its succeeding jobs;

10: QJ (f).dequeue();

11: if QJ (f) = ∅ then

12: QW .pop();

13: else

14: Sleep for a period ∆t; // ∆t = 10 minutes

three MapReduce programs to compute 1) the probability of each airline for being on schedule

(PAS), 2) the average taxi in/out time per flight at each airport (ATA), and 3) the frequency of435

each flight cancellation reason (FCR). Initially, the dataset is stored in 22 separate files. To avoid

block fragmentation in HDFS, we merge all the input data into a single file, and then upload the

combined file into HDFS. In fact, the number of reduce keys would affect the parallelization degree

of reduce tasks. The first MapReduce job (i.e. PAS) has 29 reduce keys (i.e. airport names);

the second MapReduce job (i.e. ATA) has 340 reduce keys (i.e. flight numbers); and the third440

MapReduce job (i.e. FCR) has 5 reduce keys (i.e. cancellation codes).

Experimental Results

Performance Model

We consider a computing performance model where the total DEC, proportional to the total

workload, of a moldable parallel job increases and the execution time of each task decreases as445

the number of tasks in the job increases. To validate this model, we first conduct experiments to
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Figure 7: The execution time of a MapReduce job vs. the

number of tasks.

illustrate the effect of task partitioning on job workload and DEC in big data applications, which

lays down the foundation of this research.

Towards this goal, we repeatedly run each MapReduce program with and without the reducing

phase for 10 times on our homogenous cluster to measure the DEC and execution time of the map-450

ping and reducing phases of each MapReduce job, respectively. To adjust the number of mappers

and reducers in each MapReduce job, we set the properties of “mapreduce.input.fileinputformat.split.minsize”,

“mapreduce.input.fileinputformat.split.maxsize”, and “mapreduce.job.reduces” to be different val-

ues in the configuration file. To make the map tasks homogeneous, we divide the entire input data

evenly by properly adjusting the split size. We tabulate the average DEC and execution time of455

the mapping and reducing phases of each MapReduce job with different numbers of tasks in Ta-

bles 5 and 6, respectively, where the DEC and execution time of mapping with different numbers

of splits are further plotted in Fig. 6 for a visual comparison. These results show that the DEC of a

MapReduce job increases while its execution time decreases as the number of map tasks increases

up to 23, which is the largest number of map tasks supported simultaneously by the system. Such460

trend does not seem as obvious in reducing as in mapping for the following reasons. There exists a

critical reduce-skew problem [38] for a small number of reduce keys. Also, since the workload of the

reducing task is much less than that of the mapping task in our MapReduce jobs, the measurement

errors for the reduce tasks in Table 6 are relatively larger in our measurement approach, where the

DEC (or the execution time) of the reduce tasks is calculated as the difference between the DEC of465

the whole job with the default split size and that of the corresponding map-only job with the same

split size.
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Table 5: The Execution Time and DEC of Mapping vs. the Number of Splits.

The Number of Split Size Mapping in Job 1 Mapping in Job 2 Job 3 with 1 reducera

Splits (or Mappers) (MB) Time (s) DEC (KJ) Time (s) DEC (KJ) Time (s) DEC (KJ)

5 2250 79.9 2.770 102.1 3.066 65.1 2.125

10 1136 70.0 2.877 84.7 3.212 61.1 2.298

15 760 57.9 3.259 63.1 3.568 50.8 2.668

20 571 50.3 3.256 54.3 3.547 44.2 2.651

23 497 48.1 3.304 53.5 3.671 44.0 2.728

25 458 55.1 3.425 60.0 3.708 48.6 2.843

30 382 56.5 3.525 62.2 3.867 50.7 2.921

35 327 58.9 3.788 63.7 4.068 52.3 3.129

40 287 56.2 3.890 59.1 4.129 49.9 3.243

45 255 56.3 4.020 61.2 4.277 51.3 3.363

50 229 60.1 4.131 61.9 4.413 54.8 3.500

55 209 64.7 4.315 67.6 4.560 58.4 3.640

60 191 65.1 4.537 67.8 4.742 58.5 3.794

65 177 63.0 4.606 65.9 4.848 58.0 3.930

70 164 66.1 4.821 68.3 5.013 60.8 4.081

75 153 68.9 4.907 71.0 5.123 63.2 4.216

80 144 72.6 5.078 74.5 5.293 64.8 4.383

85 135 71.6 5.177 73.6 5.435 65.5 4.513

90 128 71.9 5.338 75.1 5.498 67.4 4.617

a Since the reducing workload of the third MapReduce job is negligible in comparison with its mapping workload,

we list the DEC and execution time of the whole job with only a single reducer here.

Table 6: The Execution Time and DEC of Reducing vs. the Number of Reducers.

The Number Reducing in Job 1 Reducing in Job 2

of Reducers Time (s) DEC (KJ) Time (s) DEC (KJ)

1 60.9 0.726 38.9 0.636

2 42.0 0.780 24.3 0.657

3 43.2 0.791 24.8 0.676

4 34.7 0.792 20.5 0.695

5 30.9 0.816 18.7 0.713

6 26.4 0.838 17.2 0.753

7 21.4 0.849 17.5 0.773

8 14.9 0.785

To further validate the computing performance model in different scenarios, we run the third

MapReduce program (i.e. FCR) with 22 separate input files in HDFS on another older computer

server equipped with 2 processors of Intel(R) Xeon(R) CPU E5-2630 with 6 cores of 2.3GHz and470

64GB memory. The program execution time is measured and plotted in Fig. 7, which shows that

the execution time of this MapReduce job increases as the number of tasks increases when the
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Figure 8: Pipeline-structured MapReduce workflows.
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ferent deadline constraints.

server is fully utilized during the execution, which means that the total workload increases with the

number of tasks.

Performance of EEWM-PHO-FPTAS475

Although EEWM-PHO-FPTAS is designed for the special case of a pipeline-structured MapRe-

duce workflow on a homogeneous cluster, it is the most important component of BAWMEE to

solve the generalized problem. To test the practical performance of EEWM-PHO-FPTAS, we gen-

erate two pipeline-structured workflows comprised of 10 MapReduce jobs shown in Fig. 8, which
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are randomly selected from the aforementioned three MapReduce programs. Since the existing480

energy-efficient MapReduce workflow mapping algorithms do not adjust the number of mappers

and reducers, their workflow mapping schemes in this special case are exactly the same and com-

pletely rely on the default settings in Hadoop, where the number of mappers is the input size

divided by the split size of 128 MB, and the number of reducers is 1. We conduct the workflow

experiment on our homogeneous cluster, and plot in Figs. 9-12 the analytical estimations and ex-485

perimental measurements of the DEC and completion time based on the workflow mapping scheme

produced by EEWM-PHO-FPTAS, as well as the default and optimal workflow mapping schemes

under 10 different deadline constraints. The experimental measurements show that EEWM-PHO-

FPTAS with ε = 0.2 cuts down 27% to 40% DEC at the cost of up to 6% more computing time in

comparison with the default mapping scheme, and consumes only 6% more dynamic energy in com-490

parison with the optimal mapping scheme. Hence, these results clearly illustrate the performance

superiority of EEWM-PHO-FPTAS over existing energy-efficient workflow mapping algorithms in

practice. Furthermore, we observe that the differences between the analytical estimations and the

experimental measurements are less than 8% for the first pipeline and 11% for the second pipeline,

which indicates the accuracy of our cost models in describing the main characteristics of workflow495

execution on a real Hadoop cluster. These discrepancies are mainly caused by ignoring the impact

of the number of mappers and reducers on the execution time and DEC of shuffling in MapReduce

jobs, and the measurement errors on reduce tasks.

Simulation Settings

To further evaluate the performance of the proposed heuristic for the generalized problem of500

larger scales, we conduct extensive simulations in various scenarios. We first generate a series of

random workflows as follows: (i) randomly select the length L of the critical path of a workflow

(no less than 3) and divide the workflow into L levels, in each of which every job has the same

length of the longest path from the start job; (ii) randomly select the number of jobs in each level

except the first and last levels, in which there is only one job; (iii) for each job, add an input edge505

from a randomly selected job in the immediately preceding level, if absent, and an output edge to a

randomly selected job in its downstream level(s); (iv) randomly pick up two jobs in different levels

and add a directed edge from the job in the upstream level to the job in the downstream level until

we reach the given number of edges. The number of precedence constraints of the workflow is set

to 1.5 times of the number of jobs, if possible. The maximum possible number of tasks for each510
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job is randomly selected between 12 and 48. The workload of a job is randomly selected between

0.6 × 1012 and 21.6 × 1012 CPU cycles when running in serial. According to the performance

model of moldable jobs, the workload w(k) of a job with k > 1 tasks is randomly selected between

w(k − 1)[1 + 0.2/(k − 1)] and w(k − 1)[1 + 0.6/(k − 1)]. We calculate the sum t1 of the average

execution time of the serial jobs on the critical path and the sum t2 of the average execution time515

of all serial jobs according to the CPU speeds of all types of machines, and randomly select a

workflow deadline baseline from the time range [t1, t2]. The percentage of execution time for the

CPU-bound instructions of a task in each job on each type of machine is randomly selected from

0.6 to 1 at an interval of 0.1. By default, the amount of memory to request from the scheduler for

each map/reduce task is 1GB in Hadoop/YARN. Based on our empirical study, we randomly select520

the memory demand of a task in each job from a range between 0.5GB and 4GB at an interval of

0.5GB.

We evaluate these algorithms in a heterogeneous cluster consisting of machines with four different

specifications listed in Table 7, based on 4 types of Intel processors. Each homogeneous sub-cluster

has the same number of machines. Each scheduling simulation lasts for 3 days and is repeated for525

20 times with different workflow instances, whose arrivals follow the Poisson distribution. In the

performance evaluation, each data point represents the average of 20 runs with a standard deviation.

We set parameter ε in BAWMEE to be 0.2 to balance between workflow energy consumption and

algorithm execution time. According to Figs. 9-12, when ε is set to be 0.2, the energy optimization

performance is close to the optimal solution and BAWMEE is a polynomial-time solution. By530

default, the workflow size is randomly selected between 40 and 60 jobs; the cluster size and the

average arrival interval of workflows are set to be 128 machines and 30 minutes, respectively; the

deadline factor, which is a coefficient multiplied by the deadline baseline to determine the actual

workflow deadline, is set to 0.15.

The dynamic energy consumption reduction (DECR) over the other algorithms in comparison

is defined as

DECR(Other) =
DECOther −DECBAWMEE

DECOther
· 100%,

where DECBAWMEE and DECOther are the average DEC per workflow achieved by BAWMEE535

and the other algorithm, respectively. The deadline missing rate (DMR) is defined as the ratio of

the number of workflows missing their deadlines to the total number of workflows. The unit running

time (URT) is measured as the average simulation running time for computing the mapping scheme
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Table 7: Specifications for Four Types of Machines.

Mach. CPU Models # of Freq. DPC per Mem.

Type cores (GHz) core (W) (GB)

1 6-core Xeon E7450 18 2.40 90 64

2 Single Core Xeon 6 3.20 92 64

3 2-core Xeon 7150N 12 3.50 150 64

4 Itanium 2 9152M 8 1.66 104 64

Table 8: Problem Sizes.
Index (|V |, |M |, 1/λ, T ) Index (|V |, |M |, 1/λ, T )

1 (3-7, 4, 240, 7) 11 (53-57, 192, 30, 1)

2 (8-12, 8, 200, 7) 12 (58-62, 256, 25, 1)

3 (13-17, 12, 160, 7) 13 (63-67, 384, 20, 1)

4 (18-22, 16, 150, 7) 14 (68-72, 512, 15, 1)

5 (23-27, 24, 120, 7) 15 (73-77, 768, 12, 1)

6 (28-32, 32, 105, 3) 16 (78-82, 1024, 10, 1/3)

7 (33-37, 48, 90, 3) 17 (83-87, 1536, 8, 1/3)

8 (38-42, 64, 60, 3) 18 (88-92, 2048, 6, 1/3)

9 (43-47, 96, 45, 3) 19 (93-97, 3072, 5, 1/3)

10 (48-52, 128, 30, 3) 20 (98-102, 4096, 4, 1/3)

of each workflow. The simulation runs on a Linux machine equipped with Intel Xeon CPU E5-2620

v3 of 2.4 GHz and a memory of 16 GB.540

Simulation Results

Problem Size

For performance evaluation, we consider 20 different problem sizes from small to large scales,

indexed from 1 to 20 as tabulated in Table 8. Each problem size is defined as a quadruple

(|V |, |M |, 1/λ, T ), where 1/λ is the average arrival interval of workflow requests in minutes, and T is545

the time period in unit of days for accepting workflow requests in each simulation. As the workflow

size and arrival frequency increase from index 1 to 20, we increase the resources correspondingly to

meet tight deadlines with factor 0.15. We plot the DECR, DMR, and URT of EEDAW, MinD+ED,

MinD+EEDAJ, and BAWMEE in Figs. 13-15, respectively, which show that BAWMEE saves 5.3%

to 35.6%, 5.9% to 33.3%, and 6.3% to 34.5% DEC, and misses less deadlines in comparison with550

EEDAW, MinD+ED, and MinD+EEDAJ, respectively. Furthermore, the URT of BAWMEE is

on the same order of magnitude as those of EEDAW, MinD+ED, and MinD+EEDAJ, and is less

than 13 seconds even for problem index 20. We also plot the average number of tasks per job and

average workload reduction of BAWMEE in Fig. 16, which sheds light on the energy efficiency of
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Figure 13: The DECR vs. problem sizes.
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Figure 14: The DMR vs. problem sizes.
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Figure 15: The URT vs. problem sizes.
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Figure 16: The adaptive task partitioning of BAWMEE

vs. problem sizes.

BAWMEE. We observe from all the problem indices in Figs. 13 and 16 that on average a smaller555

number of tasks in each job would result in more reduced workload and thus more DEC reduction

achieved by BAWMEE.

Deadline Constraint

We evaluate the performance of EEDAW, MinD+ED, MinD+EEDAJ, and BAWMEE in terms

of DEC, DMR, and URT under different deadline constraints obtained from the deadline baseline560

multiplied by a factor from 0.05 to 1 with an interval of 0.05. The DEC, DMR, and URT of

these algorithms are plotted in Figs. 17-19, respectively. These measurements show that BAWMEE

saves up to 23.7%, 27.5%, and 28.2% DEC as the deadline increases in comparison with EEDAW,

MinD+ED, and MinD+EEDAJ, respectively, and reduces DMR from 99.9% to 93.0% with a dead-

line factor of 0.05 and from 83.3% to 25.9% with a deadline factor of 0.1 compared to EEDAW.565

The DMR of BAWMEE is close to zero when the deadline factor is larger than 0.15, and is similar

to those of MinD+ED and MinD+EEDAJ under various deadline constraints. Additionally, the
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Figure 17: The DEC vs. deadlines.
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Figure 18: The DMR vs. deadlines.

.05 .1 .15 .2 .25 .3 .35 .4 .45 .5 .55 .6 .65 .7 .75 .8 .85 .9 .95 1

Deadline Factor

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

R
u

n
n

in
g

 T
im

e
 p

e
r 

W
o

rk
fl
o

w
 M

a
p

p
in

g
 (

s
)

EEDAW

MinD+ED

MinD+EEDAJ

BAWMEE

Figure 19: The URT vs. deadlines.
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Figure 20: The adaptive task partitioning of BAWMEE

vs. deadlines.

URT of BAWMEE is less than 0.7 second and is 17.7% to 5.9, 9.8% to 6.0, and 45.6% to 5.1 times

of those of EEDAW, MinD+ED, and MinD+EEDAJ, respectively. It is worth pointing out that

as the deadline increases, the DEC and URT of BAWMEE decrease, because EEPM plays a more570

significant role than MDPM in BAWMEE. We plot the average number of tasks per job and the

average workload reduction of BAWMEE under different deadline constraints in Fig. 20, which

clearly shows that BAWMEE reduces more workload overhead due to a decreased number of tasks

as the deadline is relaxed, and explains why BAWMEE makes a better tradeoff between DEC and

DMR than the other algorithms in comparison at an acceptable cost of running time.575

Workflow Size

For scalability evaluation, we run these four algorithms under different average workflow sizes

with 5 to 100 jobs per workflow at an interval of 5, where the maximum and minimum workflow sizes

are 2 jobs more and less than the average workflow size, respectively. We plot the DECR, DMR,

and URT of these algorithms in Figs. 21-23, respectively, where we observe that BAWMEE with580
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Figure 21: The DECR vs. workflow sizes.
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Figure 22: The DMR vs. workflow sizes.
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Figure 23: The URT vs. workflow sizes.
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Figure 24: The adaptive task partitioning of BAWMEE

vs. workflow sizes.

DMRs close to zero achieves an increasing DECR from 4.7% to 34.6%, from 4.9% to 40.7%, as well

as from 5.0% to 41.2% in comparison with EEDAW, MinD+ED, and MinD+EEDAJ, respectively.

For large workflow sizes with 50 to 100 jobs per workflow that impose high resource demands,

BAWMEE achieves DECR only from 4.7% to 9.8%, because MDPM plays a more significant role

than EEPM in BAWMEE, which is justified by the changes in the average number of tasks per585

job and the average workload reduction of BAWMEE plotted in Fig. 24. The DMR of EEDAW

experiences a slump under the medium workflow sizes because a higher accuracy could be achieved

in the execution progress of a smaller workflow than a larger one, while a further increase in the

workflow size may lead to a more severe shortage of computing resources. In addition, the URT of

BAWMEE is comparable with those of EEDAW, MinD+ED, and MinD+EEDAJ.590

Cluster Size

We run these four algorithms under different cluster sizes of 64 to 256 machines at a step of 16

for scalability test. The DEC, DMR, and URT of these algorithms are plotted in Figs. 25-27, respec-
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Figure 25: DEC vs. cluster sizes.
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Figure 26: The DMR vs. cluster sizes.
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Figure 27: The URT vs. cluster sizes.
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Figure 28: The adaptive task partitioning of BAWMEE

vs. cluster sizes.

tively, where we observe that as the number of machines increases, BAWMEE consumes 2.5% to

26.1%, 2.0% to 30.1%, and 1.9% to 30.5% less DEC than EEDAW, MinD+ED, and MinD+EEDAJ,595

respectively, hence exhibiting a satisfactory scalability property with respect to the cluster size.

Furthermore, the DMR of DAWMEE is only between 0.1% and 10.5% and is similar to those of

MinD+ED and MinD+EEDAJ, while EEDAW misses 36.2% to 71.2% deadlines. The increase

in the cluster size results in a relatively looser deadline and a more flexible workflow mapping,

as a result of which, the DEC and DMR of these four algorithms decrease, and BAWMEE has600

more chances to save energy, which is consistent with the changes in the average number of tasks

per job and the average workload reduction of BAWMEE plotted in Fig. 28. Moreover, the URT

of BAWMEE is less than 2.7 seconds and is comparable with those of EEDAW, MinD+ED, and

MinD+EEDAJ.
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Figure 29: The DEC vs. workflow structures.
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Figure 30: The DMR vs. workflow structures.
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Figure 31: The URT vs. workflow structures.
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Figure 32: The adaptive task partitioning of BAWMEE

vs. workflow structures.

Workflow Structure605

We further investigate these four algorithms with various workflow structures, including a ran-

dom shape, a chain, a tree, a reverse tree, and a diamond. The DEC, DMR, and URT are plotted

in Figs. 29-31, respectively, which show that BAWMEE reduces DEC by 6.9% to 9.0%, 31.7% to

36.7%, 36.1% to 40.4%, and 29.6% to 33.8% in comparison with the other three algorithms in

random, tree, reverse tree and diamond structured workflows, respectively. Here, BAWMEE fails610

to save energy in chain-structured workflows, because the deadline baseline is set too tight for this

structure based on our deadline generation method, as indicated by the average number of tasks

per job and the average workload reduction of BAWMEE in Fig. 32. BAWMEE almost misses no

deadlines except in tree-structured workflows, where it favors the jobs close to the root more than

those close to leaves and thus leads to an unfair division of the slack time [6]. Besides, the URT of615

BAWMEE is less than 0.8 seconds, and is 31.2% to 5.4, 1.2 to 4.1, and 87.4% to 2.3 times of those

of EEDAW, MinD+ED, and MinD+EEDAJ with different workflow structures, respectively.
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Conclusion

We investigated the property of moldable jobs and formulated a workflow mapping problem

to minimize dynamic energy consumption under deadline and resource constraints. We designed620

an FPTAS for a special case with a pipeline-structured workflow on a homogeneous cluster, which

we proved to be weakly NP-complete, and a heuristic for a generalized problem with an arbitrary

workflow on a heterogeneous cluster. The performance superiority of the proposed solution in terms

of dynamic energy saving and deadline missing rate was illustrated by extensive simulation results

in comparison with existing algorithms, and further validated by real-life workflow implementation625

and experimental results using the Oozie workflow engine in the Hadoop/YARN ecosystem.
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